【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,下列條件不能判定四邊形ABCD為平行四邊形的是( )
A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點(diǎn)C,D作BA,BC的平行線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB,AC的垂直平分線分別交BC于D,E兩點(diǎn),垂足分別是M,N.
(1)若△ADE的周長是10,求BC的長;
(2)若∠BAC=100°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD、△CDE是兩個(gè)等邊三角形,連接BC、BE.若∠DBC=30°,BD=2,BC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一次函數(shù)y=kx+4(k≠0)的圖象稱為直線l.
(1)若直線l經(jīng)過點(diǎn)(2,0),直接寫出關(guān)于x的不等式kx+4>0的解集;
(2)若直線l經(jīng)過點(diǎn)(3,﹣2),求這個(gè)函數(shù)的表達(dá)式;
(3)若將直線l向右平移2個(gè)單位長度后經(jīng)過點(diǎn)(5,5),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y= x﹣ 與矩形ABCO的邊OC、BC分別交于點(diǎn)E、F,已知OA=3,OC=4,則△CEF的面積是( )
A.6
B.3
C.12
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在今年法國網(wǎng)球公開賽中,我國選手李娜在決賽中成功擊敗對手奪冠,稱為獲得法國網(wǎng)球公開賽冠軍的亞洲第一人.某班體育委員就本班同學(xué)對該屆法國網(wǎng)球公開賽的了解程度進(jìn)行全面調(diào)查統(tǒng)計(jì),收集數(shù)據(jù)后繪制了兩幅不完整的統(tǒng)計(jì)圖,如圖(1)和圖(2).根據(jù)圖中的信息,解答下列問題:
(1)該班共有名學(xué)生;
(2)在圖(1)中,“很了解”所對應(yīng)的圓心角的度數(shù)為;
(3)把圖(2)中的條形圖形補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.動點(diǎn)P、Q都從點(diǎn)C出發(fā),點(diǎn)P沿C→B方向做勻速運(yùn)動,點(diǎn)Q沿C→D→A方向做勻速運(yùn)動,當(dāng)P、Q其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動.
(1)求CD的長;
(2)若點(diǎn)P以1cm/s速度運(yùn)動,點(diǎn)Q以2 cm/s的速度運(yùn)動,連接BQ、PQ,設(shè)△BQP面積為S(cm2),點(diǎn)P、Q運(yùn)動的時(shí)間為t(s),求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)若點(diǎn)P的速度仍是1cm/s,點(diǎn)Q的速度為acm/s,要使在運(yùn)動過程中出現(xiàn)PQ∥DC,請你直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出下列四個(gè)條件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,從中任選三個(gè)條件能使△ABC≌△DEF的共有( 。
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com