【題目】一圓的半徑是10cm,圓內(nèi)的兩條平行弦長分別為12cm和16cm,則這兩條平行弦之間的距離為

【答案】14cm或2cm
【解析】解:有兩種情況:①如圖,當AB和CD在O的兩旁時,
過O作MN⊥AB于M,交CD于N,連接OB,OD,
∵AB∥CD,
∴MN⊥CD,
由垂徑定理得:BM= AB=8cm,DN= CD=6cm,
∵OB=OD=10cm,
由勾股定理得:OM= =6cm,
同理ON=8cm,
∴MN=8cm+6cm=14cm,
②當AB和CD在O的同旁時,MN=8cm﹣6cm=2cm,
故答案為:14cm或2cm.


過O作MN⊥AB于M,交CD于N,連接OB,OD,有兩種情況:①當AB和CD在O的兩旁時,根據(jù)垂徑定理求出BM,DN,根據(jù)勾股定理求出OM,ON,相加即可;②當AB和CD在O的同旁時,ON﹣OM即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點AB分別是∠NOP、MOP平分線上的點,ABOP于點E,BCMN于點C,ADMN于點D,下列結(jié)論錯誤的是(  )

A. ADBCAB B. 與∠CBO互余的角有兩個

C. AOB=90° D. OCD的中點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)請直接寫出與點B關(guān)于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°.畫出對應(yīng)的△A′B′C′圖形,直接寫出點A的對應(yīng)點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=(x﹣1)2+n與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C(0,﹣3),點D與點C關(guān)于拋物線的對稱軸對稱.

(1)求拋物線的解析式及點D的坐標;
(2)點P是拋物線對稱軸上的一動點,當△PAC的周長最小時,求出點P的坐標;
(3)點Q在x軸上,且∠ADQ=∠DAC,請直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,A=135°,點P是菱形內(nèi)部一點,且滿足SPCD=,則PC+PD的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個實數(shù)根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形ABCD對折,得折痕PQ,展開后再沿MN翻折,使點C恰好落在折痕PQ上的點C′處,點D落在D′處,其中MBC的中點且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫出△ABC關(guān)于y軸對稱的△A1B1C1
②畫出△ABC關(guān)于原點O成中心對稱的△A2B2C2;

(2)求△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會為了解本校初中學(xué)生每天做作業(yè)所用時間情況,采用問卷的方式對一部分學(xué)生進行調(diào)查.在確定調(diào)查對象時,大家提出以下幾種方案:A.對各班班長進行調(diào)查;B.對某班的全體學(xué)生進行調(diào)查;C.從全校每班隨機抽取5名學(xué)生進行調(diào)查.在問卷調(diào)查時,每位被調(diào)查的學(xué)生都選擇了問卷中適合自己的一個時間,學(xué)生會將收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計圖.

(1)為了使收集到的數(shù)據(jù)具有代表性.學(xué)生會在確定調(diào)查對象時應(yīng)選擇方案________ (A,BC);

(2)被調(diào)查的學(xué)生每天做作業(yè)所用時間的眾數(shù)為________h;

(3)根據(jù)以上統(tǒng)計結(jié)果,估計該校900名初中學(xué)生中每天做作業(yè)用1.5 h的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案