【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,⊙A與x軸交于B(2,0)、C(8,0)兩點(diǎn),與y軸相切于點(diǎn)D,則點(diǎn)A的坐標(biāo)是( 。
A. (5,4) B. (4,5) C. (5,3) D. (3,5)
【答案】A
【解析】
因?yàn)辄c(diǎn)A在第一象限,⊙A與x軸交于B(2,0)、C(8,0)兩點(diǎn),與y軸相切于點(diǎn)D,所以OB=2,OC=8,BC=6,連接AD,則AD⊥OD,過(guò)點(diǎn)A作AE⊥OC于E,則ODAE是矩形,由垂徑定理可知BE=EC=3,所以OE=AD=5,再連接AB,則AB=AD=5,利用勾股定理可求出AE=4,從而就求出了A的坐標(biāo).
連接AD,AB,AC,再過(guò)點(diǎn)A作AE⊥OC于E,
則ODAE是矩形,
∵點(diǎn)A在第一象限,⊙A與x軸交于B(2,0)、C(8,0)兩點(diǎn),與y軸相切于點(diǎn)D,
∴OB=2,OC=8,BC=6,
∵⊙A與y軸相切于點(diǎn)D,
∴AD⊥OD,
∵由垂徑定理可知:BE=EC=3,
∴OE=AD=5,
∴AB=AD=5,
利用勾股定理知AE=4,
∴A(5,4).
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為64和42,則△EDF的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)都是1,
(1)求四邊形ABCD的周長(zhǎng)和面積
(2)∠BCD是直角嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCO的頂點(diǎn)B(10,8),點(diǎn)A,C在坐標(biāo)軸上,E是BC邊上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,過(guò)點(diǎn)E的反比例函數(shù)y=的圖象與邊AB交于點(diǎn)F,則線段BF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AC=BC=10,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,DF⊥AC于F,交CB的延長(zhǎng)線于點(diǎn)E.
(1)求證:直線EF是⊙O的切線;
(2)若sin∠E=,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王老師將個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球?qū)嶒?yàn),每次摸出一個(gè)球(有放回),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).
摸球的次數(shù) | ||||||
摸到黑球的次數(shù) | ||||||
摸到黑球的頻率 |
補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)球是黑球的概率是________(精確到0.01);
估算袋中白球的個(gè)數(shù);
在的條件下,若小強(qiáng)同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計(jì)算他兩次都摸出白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點(diǎn),點(diǎn) 是 軸上一點(diǎn),沿直線 折疊 剛好落在 軸上處.
請(qǐng)解答下列問(wèn)題:
(1),兩點(diǎn)的坐標(biāo)分別為_____________,____________.
(2)求的長(zhǎng);
(3)在軸上存在點(diǎn),使三角形為等腰三角形,直接寫出的坐標(biāo)_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、P、B、C是⊙O上的四點(diǎn),∠APC=∠CPB=60°,過(guò)點(diǎn)C作CM∥BP交PA的延長(zhǎng)線于點(diǎn)M.
(1)求證:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在鈍角三角形中,,,動(dòng)點(diǎn)從點(diǎn)出發(fā)到點(diǎn)止,動(dòng)點(diǎn)從點(diǎn)出發(fā)到點(diǎn)止,點(diǎn)運(yùn)動(dòng)的速度為,點(diǎn)運(yùn)動(dòng)的速度為,如果兩點(diǎn)同時(shí)開始運(yùn)動(dòng),那么,
若AD=AE,求值.
若△ADE和△ABC相似,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com