【題目】如圖,在矩形ABCD中,點O為坐標(biāo)原點,點B的坐標(biāo)為(4,3),點A、C在坐標(biāo)軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標(biāo);
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標(biāo);
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標(biāo)平面內(nèi)的點,且N點的橫坐標(biāo)為x,請直接寫出x的取值范圍(不用說明理由).

【答案】
(1)

解:直線l1:當(dāng)y=0時,2x+3=0,x=﹣

則直線l1與x軸坐標(biāo)為(﹣ ,0)

直線l2:當(dāng)y=3時,2x﹣3=3,x=3

則直線l2與AB的交點坐標(biāo)為(3,3);


(2)

解:①若點A為直角頂點時,點M在第一象限,連結(jié)AC,

如圖1,

∠APB>∠ACB>45°,

∴△APM不可能是等腰直角三角形,

∴點M不存在;

②若點P為直角頂點時,點M在第一象限,如圖2,

過點M作MN⊥CB,交CB的延長線于點N,

則Rt△ABP≌Rt△PNM,

∴AB=PN=4,MN=BP,

設(shè)M(x,2x﹣3),則MN=x﹣4,

∴2x﹣3=4+3﹣(x﹣4),

x= ,

∴M( , );

③若點M為直角頂點時,點M在第一象限,如圖3,

設(shè)M1(x,2x﹣3),

過點M1作M1G1⊥OA,交BC于點H1,

則Rt△AM1G1≌Rt△PM1H1,

∴AG1=M1H1=3﹣(2x﹣3),

∴x+3﹣(2x﹣3)=4,

x=2

∴M1(2,1);

設(shè)M2(x,2x﹣3),

同理可得x+2x﹣3﹣3=4,

∴x= ,

∴M2 , );

綜上所述,點M的坐標(biāo)為( ),(2,1),( , );


(3)

解:x的取值范圍為﹣ ≤x<0或0<x≤ ≤x≤ ≤x≤2.


【解析】考查了四邊形綜合題,涉及的知識點有:坐標(biāo)軸上點的坐標(biāo)特征,等腰直角三角形的性質(zhì),矩形的性質(zhì),分類思想的應(yīng)用,方程思想的應(yīng)用,綜合性較強,有一定的難度.(1)根據(jù)坐標(biāo)軸上點的坐標(biāo)特征可求直線l1與x軸,直線l2與AB的交點坐標(biāo);(2)分三種情況:①若點A為直角頂點時,點M在第一象限;若點P為直角頂點時,點M在第一象限;③若點M為直角頂點時,點M在第一象限;進行討論可求點M的坐標(biāo);(3)根據(jù)矩形的性質(zhì)可求N點的橫坐標(biāo)x的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和矩形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);矩形的四個角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,AC=BC=
(1)作⊙O,使它過點A、B、C(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)所作的圓中,圓心角∠BOC=°,圓的半徑為 , 劣弧 的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,對角線AC=2 ,E為BC邊上一點,BC=3BE,將矩形ABCD沿AE所在的直線折疊,B點恰好落在對角線AC上的B′處,則AB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分EOC

(1)若EOC=70°,求BOD的度數(shù);

(2)若EOCEOD=2:3,求BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點A,B為圓心,大于線段AB長度一半的長為半徑作弧,相交于點E,F(xiàn),過點E,F(xiàn)作直線EF,交AB于點D,連結(jié)CD,則CD的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是(  )

A. 當(dāng)AB=BC時,四邊形ABCD是菱形

B. 當(dāng)ACBD時,四邊形ABCD是菱形

C. 當(dāng)∠ABC=90°時,四邊形ABCD是矩形

D. 當(dāng)AC=BD時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程中,沒有實數(shù)根的是( 。
A.2x+3=0
B.﹣1=0
C.
D.+x+1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉(zhuǎn),得△A′BO′,點A,O旋轉(zhuǎn)后的對應(yīng)點為A′,O′,記旋轉(zhuǎn)角為α.

(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點O′的坐標(biāo);
(3)在(Ⅱ)的條件下,邊OA上 的一點P旋轉(zhuǎn)后的對應(yīng)點為P′,當(dāng)O′P+BP′取得最小值時,求點P′的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1=﹣ x﹣1與反比例函數(shù)y2= 的圖象交于點A(﹣4,m).
(1)觀察圖象,在y軸的左側(cè),當(dāng)y1>y2時,請直接寫出x的取值范圍;
(2)求出反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案