【題目】在平面直角坐標(biāo)系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉(zhuǎn),得△A′BO′,點A,O旋轉(zhuǎn)后的對應(yīng)點為A′,O′,記旋轉(zhuǎn)角為α.

(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點O′的坐標(biāo);
(3)在(Ⅱ)的條件下,邊OA上 的一點P旋轉(zhuǎn)后的對應(yīng)點為P′,當(dāng)O′P+BP′取得最小值時,求點P′的坐標(biāo)(直接寫出結(jié)果即可)

【答案】
(1)

解:如圖①,

∵點A(4,0),點B(0,3),

∴OA=4,OB=3,

∴AB= =5,

∵△ABO繞點B逆時針旋轉(zhuǎn)90°,得△A′BO′,

∴BA=BA′,∠ABA′=90°,

∴△ABA′為等腰直角三角形,

∴AA′= BA=5


(2)

解:作O′H⊥y軸于H,如圖②,

∵△ABO繞點B逆時針旋轉(zhuǎn)120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,

∴∠HBO′=60°,

在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,

∴BH= BO′= ,O′H= BH= ,

∴OH=OB+BH=3+ =

∴O′點的坐標(biāo)為( ,


(3)

解:∵△ABO繞點B逆時針旋轉(zhuǎn)120°,得△A′BO′,點P的對應(yīng)點為P′,

∴BP=BP′,

∴O′P+BP′=O′P+BP,

作B點關(guān)于x軸的對稱點C,連結(jié)O′C交x軸于P點,如圖②,

則O′P+BP=O′P+PC=O′C,此時O′P+BP的值最小,

∵點C與點B關(guān)于x軸對稱,

∴C(0,﹣3),

設(shè)直線O′C的解析式為y=kx+b,

把O′( , ),C(0,﹣3)代入得 ,解得 ,

∴直線O′C的解析式為y= x﹣3,

當(dāng)y=0時, x﹣3=0,解得x= ,則P( ,0),

∴OP= ,

∴O′P′=OP=

作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,

∴∠DP′O′=30°,

∴O′D= O′P′= ,P′D= O′D= ,

∴DH=O′H﹣O′D= = ,

∴P′點的坐標(biāo)為( ,


【解析】本題考查了幾何變換綜合題:熟練掌握旋轉(zhuǎn)的性質(zhì);理解坐標(biāo)與圖形性質(zhì);會利用兩點之間線段最短解決最短路徑問題;記住含30度的直角三角形三邊的關(guān)系.(1)如圖①,先利用勾股定理計算出AB=5,再根據(jù)旋轉(zhuǎn)的性質(zhì)得BA=BA′,∠ABA′=90°,則可判定△ABA′為等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)求AA′的長;(2)作O′H⊥y軸于H,如圖②,利用旋轉(zhuǎn)的性質(zhì)得BO=BO′=3,∠OBO′=120°,則∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三邊的關(guān)系可計算出BH和O′H的長,然后利用坐標(biāo)的表示方法寫出O′點的坐標(biāo);(3)由旋轉(zhuǎn)的性質(zhì)得BP=BP′,則O′P+BP′=O′P+BP,作B點關(guān)于x軸的對稱點C,連結(jié)O′C交x軸于P點,如圖②,易得O′P+BP=O′C,利用兩點之間線段最短可判斷此時O′P+BP的值最小,接著利用待定系數(shù)法求出直線O′C的解析式為y= x﹣3,從而得到P( ,0),則O′P′=OP= ,作P′D⊥O′H于D,然后確定∠DP′O′=30°后利用含30度的直角三角形三邊的關(guān)系可計算出P′D和DO′的長,從而可得到P′點的坐標(biāo).
【考點精析】本題主要考查了線段的基本性質(zhì)和含30度角的直角三角形的相關(guān)知識點,需要掌握線段公理:所有連接兩點的線中,線段最短.也可簡單說成:兩點之間線段最短;連接兩點的線段的長度,叫做這兩點的距離;線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D.

(1)求作∠ABC的平分線(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若∠ABC的平分線分別交AD,ACP,Q兩點,證明:AP=AQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標(biāo)原點,點B的坐標(biāo)為(4,3),點A、C在坐標(biāo)軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標(biāo);
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標(biāo);
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標(biāo)平面內(nèi)的點,且N點的橫坐標(biāo)為x,請直接寫出x的取值范圍(不用說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)老師在課堂上提出一個問題:通過探究知道: ≈1.414…,它是個無限不循環(huán)小數(shù),也叫無理數(shù),它的整數(shù)部分是1,那么有誰能說出它的小數(shù)部分是多少,小明舉手回答:它的小數(shù)部分我們無法全部寫出來,但可以用1來表示它的小數(shù)部分,張老師夸獎小明真聰明,肯定了他的說法.現(xiàn)請你根據(jù)小明的說法解答:

1的小數(shù)部分是a 的整數(shù)部分是b,求a+b的值.

2)已知8+=x+y,其中x是一個整數(shù),0y1,求3x+y2018的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展課外體育活動,決定開設(shè)A:籃球、B:乒乓球、C:武術(shù)、D:跑步四種活動項目為了解學(xué)生最喜歡哪一種活動項目每人只選取一種隨機(jī)抽取了m名學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如下統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題:

______;

在扇形統(tǒng)計圖中“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為______;

請把圖的條形統(tǒng)計圖補(bǔ)充完整;

若該校有學(xué)生1200人,請你估計該校最喜歡武術(shù)的學(xué)生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊鐵片邊緣是由拋物線和線段AB組成,測得AB=20cm,拋物線的頂點到AB邊的距離為25cm.現(xiàn)要沿AB邊向上依次截取寬度均為4cm的矩形鐵皮,從下往上依次是第一塊,第二塊…如圖所示.已知截得的鐵皮中有一塊是正方形,則這塊正方形鐵皮是第塊.

查看答案和解析>>

同步練習(xí)冊答案