【題目】如圖,邊長(zhǎng)為的等邊中,一動(dòng)點(diǎn)沿從向移動(dòng),動(dòng)點(diǎn)以同樣的速度從出發(fā)沿的延長(zhǎng)線運(yùn)動(dòng),連交邊于,作于,則的長(zhǎng)為__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程
(1)求證:無論取何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若等腰三角形的一邊長(zhǎng),另兩邊長(zhǎng)、恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【新知理解】
如圖①,若點(diǎn)、在直線l同側(cè),在直線l上找一點(diǎn),使的值最小.
作法:作點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn),連接交直線l于點(diǎn),則點(diǎn)即為所求.
【解決問題】
如圖②,是邊長(zhǎng)為6cm的等邊三角形的中線,點(diǎn)、分別在、上,則的最小值為 cm;
【拓展研究】
如圖③,在四邊形的對(duì)角線上找一點(diǎn),使.(保留作圖痕跡,并對(duì)作圖方法進(jìn)行說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】情境:小芳離開家去學(xué)校上學(xué),走了一段路后,發(fā)現(xiàn)自己作業(yè)本忘家里了,于是返回家里找到作業(yè)本,然后又趕快去學(xué)校;
情境:小明從家出發(fā)去圖書館還書,走了一段路程后,發(fā)現(xiàn)時(shí)間有點(diǎn)緊張,便以更快的速度前進(jìn).
(1)情境所對(duì)應(yīng)的函數(shù)圖象分別是_______,_______(填寫序號(hào));
(2)請(qǐng)你為剩下的函數(shù)圖象寫出一個(gè)適合的情景.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn).
自主探究:
(1)點(diǎn)到軸的距離是_______,到原點(diǎn)的距離是 .
(2)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)坐標(biāo)為________,關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為 .
探索發(fā)現(xiàn):
(3)當(dāng)取何值時(shí),是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列問題:
(1)閱讀理解:
如圖1,在中,若,,求邊上的中線的取值范圍.
解決此問題可以用如下方法:延長(zhǎng)到點(diǎn)使,再連接(或?qū)?/span>繞著逆時(shí)針旋轉(zhuǎn)得到,把、,集中在中,利用三角形三邊的關(guān)系即可判斷.中線的取值范圍是______.
(2)問題解決:
如圖2,在中,是邊上的中點(diǎn),于點(diǎn),交于點(diǎn),交于點(diǎn),連接,求證:.
(3)問題拓展:
如圖3,在四邊形中,,,,以為頂點(diǎn)作一個(gè)角,角的兩邊分別交,于、兩點(diǎn),連接,探索線段,,之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=6,BC=8,若AC,BC邊上的中線BE,AD 垂直相交于點(diǎn)O,則AB=( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.
(1)若m=-3,求拋物線的解析式,并寫出拋物線的對(duì)稱軸;
(2)如圖1,在(1)的條件下,設(shè)拋物線的對(duì)稱軸交x軸于D,在拋物線對(duì)稱軸左側(cè)上有 一點(diǎn)E,使S△ACE=S△ACD,求E點(diǎn)的坐標(biāo);
(3) 如圖2,設(shè)F(-1,-4),FG⊥y軸于G,在線段OG上是否存在點(diǎn)P,使 ∠OBP=∠FPG? 若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知過點(diǎn)B(1,0)的直線l1與直線l2:y=2x+4相交于點(diǎn)P(﹣1,a),l1與y軸交于點(diǎn)C,l2與x軸交于點(diǎn)A.
(1)求a的值及直線l1的解析式.
(2)求四邊形PAOC的面積.
(3)在x軸上方有一動(dòng)直線平行于x軸,分別與l1,l2交于點(diǎn)M,N,且點(diǎn)M在點(diǎn)N的右側(cè),x軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請(qǐng)直接寫出滿足條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com