【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.
①b2>4ac; ②4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線上的兩點,則y1<y2.
上述4個判斷中,正確的是( 。
A. ①② B. ①④ C. ①③④ D. ②③④
【答案】B
【解析】試題分析:根據(jù)拋物線與x軸有兩個交點可得b2﹣4ac>0,進而判斷①正確;
根據(jù)題中條件不能得出x=﹣2時y的正負,因而不能得出②正確;
如果設ax2+bx+c=0的兩根為α、β(α<β),那么根據(jù)圖象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判斷③錯誤;
先根據(jù)拋物線的對稱性可知x=﹣2與x=4時的函數(shù)值相等,再根據(jù)二次函數(shù)的增減性即可判斷④正確.
解:①∵拋物線與x軸有兩個交點,
∴b2﹣4ac>0,
∴b2>4ac,故①正確;
②x=﹣2時,y=4a﹣2b+c,而題中條件不能判斷此時y的正負,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②錯誤;
③如果設ax2+bx+c=0的兩根為α、β(α<β),那么根據(jù)圖象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③錯誤;
④∵二次函數(shù)y=ax2+bx+c的對稱軸是直線x=1,
∴x=﹣2與x=4時的函數(shù)值相等,
∵4<5,
∴當拋物線開口向上時,在對稱軸的右邊,y隨x的增大而增大,
∴y1<y2,故④正確.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,如果∠APB繞點P旋轉時始終滿足,我們就把∠APB叫做∠MON的智慧角.
(1)如圖2,已知∠MON=90°,點P為∠MON的平分線上一點,以點P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,且∠APB=135°. 求證:∠APB是∠MON的智慧角;
(2)如圖3,C是函數(shù)圖象上的一個動點,過點C的直線CD分別交軸和軸于點A,B兩點,且滿足BC=2CA,請求出∠AOB的智慧角∠APB的頂點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一農戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用四舍五入法按要求對0.0603分別取近似值,其中錯誤的是( )
A.0.1 (精確到0.1)B.0.060(精確到0.001)
C.0.06(精確到百分位)D.0.06 (精確到十分位)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,D是邊AC上一點,連接BD.將△BCD繞點B逆時針旋轉60°得到△BAE,連接ED.若BC=10,BD=9,求△AED的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=10,點C、D在線段AB上且AC=DB=2;P是線段CD上的動點,分別以AP、PB為邊在線段AB的同側作等邊△AEP和等邊△PFB,連接EF,設EF的中點為G。當點P從點C運動到點D時,中點G移動路徑的長是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,屬于不確定事件的是( 。
A. 科學實驗,前100次實驗都失敗了,第101次實驗會成功
B. 投擲一枚骰子,朝上面出現(xiàn)的點數(shù)是7點
C. 太陽從西邊升起來了
D. 用長度分別是3cm,4cm,5cm的細木條首尾順次相連可組成一個直角三角形
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com