【題目】如圖,某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定:每購(gòu)買500元商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針上對(duì)準(zhǔn)500、200、100、50、10的區(qū)域,顧客就可以獲得500元、200元、100元、50元、10元的購(gòu)物券一張(轉(zhuǎn)盤等分成20份)。
(1)小華購(gòu)物450元,他獲得購(gòu)物券的概率是多少?
(2)小麗購(gòu)物600元,那么:
① 她獲得50元購(gòu)物券的概率是多少?
② 她獲得100元以上(包括100元)購(gòu)物券的概率是多少?
【答案】(1)因?yàn)椴粔?00元,所以不能抽獎(jiǎng),獲獎(jiǎng)概率為0.
(2)P(獲得50元購(gòu)物券)=
(3)P(獲得100元以上)=
【解析】試題分析:(1)由于每購(gòu)買500元商品,才能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),所以小華購(gòu)物450元,不能獲得轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),故獲得購(gòu)物券的概率為0;(2)①找到50元的份數(shù)占總份數(shù)的多少即為獲得50元購(gòu)物券的概率;②找到100元及以上的份數(shù)占總份數(shù)的多少即為獲得100元以上(包括100元)購(gòu)物券的概率.
試題解析:(1)∵450<500,
∴小華購(gòu)物450元,不能獲得轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),
∴小華獲得購(gòu)物券的概率為0;
(2)小麗購(gòu)物600元,能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì)。
①她獲得50元購(gòu)物券的概率是=;
②她獲得100元以上(包括100元)購(gòu)物券的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀再解答:我們已經(jīng)知道,根據(jù)幾何圖形的面積關(guān)系可以說(shuō)明完全平方公式,實(shí)際上還有一些等式也可以用這種方式加以說(shuō)明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用圖①的面積關(guān)系來(lái)說(shuō)明.
(1)根據(jù)圖②寫出一個(gè)等式: ;
(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請(qǐng)你畫出一個(gè)相應(yīng)的幾何圖形加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC>AC,以斜邊AB 所在直線為x軸,以斜邊AB上的高所在直線為y軸,建立直角坐標(biāo)系,若OA2+OB2= 17, 且線段OA、OB的長(zhǎng)度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根.
(1)求C點(diǎn)的坐標(biāo);
(2)以斜邊AB為直徑作圓與y軸交于另一點(diǎn)E,求過(guò)A、B、E 三點(diǎn)的拋物線的關(guān)系式,并畫出此拋物線的草圖.
(3)在拋物線上是否存在點(diǎn)P,使△ABP與△ABC全等?若存在,求出符合條件的P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在y軸上,⊙P交x軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于點(diǎn)C,過(guò)點(diǎn)C的直線y=2x+b交x軸于點(diǎn)D,且⊙P的半徑為,AB=4.
(1)求點(diǎn)B,P,C的坐標(biāo);(2)求證:CD是⊙P的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)B作BF∥CA交DA的延長(zhǎng)線于點(diǎn)F,AE,BF相交于點(diǎn)H.
(1)圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)
(2)證明:四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫出這個(gè)條件.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠接到一批服裝加工業(yè)務(wù),若由甲車間獨(dú)做,可比規(guī)定時(shí)間提前8天完成,甲車間在制作完這批服裝的60%后因另有任務(wù),立即將剩余服裝全部交給乙車間,結(jié)果剛好按規(guī)定時(shí)間完成.已知甲、乙兩個(gè)車間每天分別制作200和120件服裝,求該工廠所接的這批服裝的件數(shù)和規(guī)定時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)把下面證明過(guò)程補(bǔ)充完整:
已知:如圖,∠ADC=∠ABC,BE、DF分別平行∠ABC、∠ADC,且∠1=∠2.
求證:∠A=∠C.
證明:因?yàn)?/span>BE、DF分別平分∠ABC、∠ADC,( ).
所以∠1=∠ABC,∠3=∠ADC( ).
因?yàn)椤?/span>ABC=∠ADC(已知),
所以∠1=∠3( ),
因?yàn)椤?/span>1=∠2(已知),
所以∠2=∠3( ).
所以 ∥ ( ).
所以∠A+∠ =180°,∠C+∠ =180°( ).
所以∠A=∠C( ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com