如圖1,二次函數(shù)y=ax2-2ax-3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
分析:(1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點(diǎn)D的坐標(biāo).
(2)①以AD為直徑的圓經(jīng)過點(diǎn)C,即點(diǎn)C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個(gè)直角三角形,且∠ACD=90°,A點(diǎn)坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長(zhǎng)度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值,由此得出拋物線的解析式.
②將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點(diǎn)M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點(diǎn)的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.
③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,由C、D兩點(diǎn)的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點(diǎn)Q的坐標(biāo),然后用Q點(diǎn)縱坐標(biāo)表達(dá)出QD、QB的長(zhǎng),根據(jù)上面的等式列方程即可求出點(diǎn)Q的坐標(biāo).
解答:解:(1)∵y=ax2-2ax-3a=a(x-1)2-4a,
∴D(1,-4a).

(2)①∵以AD為直徑的圓經(jīng)過點(diǎn)C,
∴△ACD為直角三角形,且∠ACD=90°;
由y=ax2-2ax-3a=a(x-3)(x+1)知,A(3,0)、B(-1,0)、C(0,-3a),則:
AC2=(0-3)2+(-3a-0)2=9a2+9、CD2=(0-1)2+(-3a+4a)2=a2+1、AD2=(3-1)2+(0+4a)2=16a2+4
由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
化簡(jiǎn),得:a2=1,由a<0,得:a=-1
即,拋物線的解析式:y=-x2+2x+3.
②∵將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,
∴PM∥x軸,且PM=OB=1;
設(shè)M(x,-x2+2x+3),則OF=x,MF=-x2+2x+3,BF=OF+OB=x+1;
∵M(jìn)F:BF=1:2,即BF=2MF,
∴2(-x2+2x+3)=x+1,化簡(jiǎn),得:2x2-3x-5=0
解得:x1=-1、x2=
5
2

∴M(
5
2
,
7
4
)、N(
3
2
,
15
4
).
③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,過C作CH⊥QD于H,如右圖;
設(shè)Q(1,b),則QD=4-b,QB2=QG2=(1+1)2+(b-0)2=b2+4;
∵C(0,3)、D(1,4),
∴CH=DH=1,即△CHD是等腰直角三角形,
∴△QGD也是等腰直角三角形,即:QD2=2QG2;
代入數(shù)據(jù),得:
(4-b)2=2(b2+4),化簡(jiǎn),得:b2+8b-8=0,
解得:b=-4±2
6

即點(diǎn)Q的坐標(biāo)為(1,-4+2
6
)或(1,-4-2
6
).
點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識(shí)點(diǎn);后兩個(gè)小題較難,最后一題中,通過構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),對(duì)稱軸為x=-1.
給出四個(gè)結(jié)論:①b2>4ac;②b=-2a;③a-b+c=0;④b>5a.其中正確結(jié)論是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一個(gè)二次函數(shù)的圖象經(jīng)過點(diǎn)A、C、B三點(diǎn),點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)精英家教網(wǎng)為(4,0),點(diǎn)C在y軸的正半軸上,且AB=OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式;
(3)自變量x在什么范圍內(nèi)時(shí),y隨x的增大而增大?何時(shí),y隨x的增大而減少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•十堰模擬)如圖已知二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,對(duì)稱軸為直線x=1,頂點(diǎn)坐標(biāo)P(1,4).則下列結(jié)論中:
①ac<0;②2a+b=0;③b<8;④當(dāng)m<4時(shí),方程ax2+bx+c-m=0有兩個(gè)不相等的實(shí)數(shù)根.
正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為直線x=1,若其與x軸一交點(diǎn)為A(3,0),則由圖象可知,方程ax2+bx+c=0的另一個(gè)解是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案