【題目】如圖,ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2B,O的切線APOC的延長(zhǎng)線相交于點(diǎn)P,若PA= 6cm,求AC的長(zhǎng).

四、綜合題(10分)

【答案】6cm.

【解析】試題分析: AB是⊙O的直徑和∠BAC=2B,根據(jù)圓周角定理和三角形內(nèi)角和定理可得∠BAC=600,等邊三角形的判定知△OAC是等邊三角形,PA是⊙O的切線得

RtOAP,PA=6cm,AOP=60°,從而應(yīng)用銳角三角函數(shù)即可求得OA=AC的長(zhǎng).

試題解析:∵AB是⊙O直徑, ∴∠ACB=90°,

∵∠BAC=2B,

∴∠B=30°,BAC=60°,

OA=OC,

∴△AOC是等邊三角形,

∴∠AOC=60°,AC=OA,

PA是⊙O切線,

∴∠OAP=90°,

RtOAP,PA=6cm,AOP=60°,

OA= =6cm,

AC=OA=6cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,是直線上一點(diǎn),以為一邊在的右側(cè)作,使,連接.設(shè),.

(1)如圖(1),點(diǎn)在線段上移動(dòng)時(shí),試說(shuō)明;

(2)如圖(2),點(diǎn)在線段的延長(zhǎng)線上移動(dòng)時(shí),探索角之間的數(shù)量關(guān)系并證明;

(3)當(dāng)點(diǎn)在線段的反向延長(zhǎng)線上移動(dòng)時(shí),請(qǐng)?jiān)趥溆脠D上根據(jù)題意畫(huà)出圖形,并猜想角之間的數(shù)量關(guān)系是______________,線段、之間的數(shù)量關(guān)系是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,4),點(diǎn)B的坐標(biāo)為(3,0).三角形AOB中任意一點(diǎn)P(x0,y0)經(jīng)平移后的對(duì)應(yīng)點(diǎn)為P1(x0+2,y0),并且點(diǎn)A,O,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D,E,F(xiàn).

(1)指出平移的方向和距離;

(2)畫(huà)出平移后的三角形DEF;

(3)求線段OA在平移過(guò)程中掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)BE分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AG是正八邊形ABCDEFGH的一條對(duì)角線.

(1)在剩余的頂點(diǎn)B、C、D、E、F、H中,連接兩個(gè)頂點(diǎn),使連接的線段與AG平行,并說(shuō)明理由;

(2)兩邊延長(zhǎng)AB、CD、EF、GH,使延長(zhǎng)線分別交于點(diǎn)P、Q、M、N,若AB=2,求四邊形PQMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ADBCAEBC于點(diǎn)E,ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.

(1)求證:CD與⊙O相切;

(2)BF24,OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,要把殘破的輪片復(fù)制完整,已知弧上的三點(diǎn)A、B、C.

(1)用尺規(guī)作圖法找出所在圓的圓心(保留作圖痕跡,不寫(xiě)作法);

(2)設(shè)△ABC是等腰三角形,底邊BC=8cm,腰AB=5cm,求圓片的半徑R.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知CE是圓O的直徑,點(diǎn)B在圓O上由點(diǎn)E順時(shí)針向點(diǎn)C運(yùn)動(dòng)(點(diǎn)B不與點(diǎn)E、C重合),弦BDCE于點(diǎn)F,且BD=BC,過(guò)點(diǎn)B作弦CD的平行線與CE的延長(zhǎng)線交于點(diǎn)A.

(1)若圓O的半徑為2,且點(diǎn)D為弧EC的中點(diǎn)時(shí),求圓心O到弦CD的距離;

(2)當(dāng)DFDB=CD2時(shí),求∠CBD的大小;

(3)若AB=2AE,且CD=12,求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各句判定矩形的說(shuō)法對(duì)角線相等的四邊形是矩形;對(duì)角線互相平分且相等的四邊形是矩形;有一個(gè)角是直角的四邊形是矩形;有四個(gè)角是直角的四邊形是矩形;四個(gè)角都相等的四邊形是矩形;對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;是正確有幾個(gè)

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案