【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2∠B,⊙O的切線AP與OC的延長(zhǎng)線相交于點(diǎn)P,若PA= 6cm,求AC的長(zhǎng).
四、綜合題(10分)
【答案】6cm.
【解析】試題分析: 由AB是⊙O的直徑和∠BAC=2∠B,根據(jù)圓周角定理和三角形內(nèi)角和定理可得∠BAC=600,等邊三角形的判定知△OAC是等邊三角形,由PA是⊙O的切線得
Rt△OAP中,PA=6cm,∠AOP=60°,從而應(yīng)用銳角三角函數(shù)即可求得OA=AC的長(zhǎng).
試題解析:∵AB是⊙O直徑, ∴∠ACB=90°,
∵∠BAC=2∠B,
∴∠B=30°,∠BAC=60°,
∵OA=OC,
∴△AOC是等邊三角形,
∴∠AOC=60°,AC=OA,
∵PA是⊙O切線,
∴∠OAP=90°,
在Rt△OAP中,PA=6cm,∠AOP=60°,
∴OA= =6cm,
∴AC=OA=6cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,是直線上一點(diǎn),以為一邊在的右側(cè)作,使,,連接.設(shè),.
(1)如圖(1),點(diǎn)在線段上移動(dòng)時(shí),試說(shuō)明;
(2)如圖(2),點(diǎn)在線段的延長(zhǎng)線上移動(dòng)時(shí),探索角與之間的數(shù)量關(guān)系并證明;
(3)當(dāng)點(diǎn)在線段的反向延長(zhǎng)線上移動(dòng)時(shí),請(qǐng)?jiān)趥溆脠D上根據(jù)題意畫(huà)出圖形,并猜想角與之間的數(shù)量關(guān)系是______________,線段、、之間的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,4),點(diǎn)B的坐標(biāo)為(3,0).三角形AOB中任意一點(diǎn)P(x0,y0)經(jīng)平移后的對(duì)應(yīng)點(diǎn)為P1(x0+2,y0),并且點(diǎn)A,O,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D,E,F(xiàn).
(1)指出平移的方向和距離;
(2)畫(huà)出平移后的三角形DEF;
(3)求線段OA在平移過(guò)程中掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AG是正八邊形ABCDEFGH的一條對(duì)角線.
(1)在剩余的頂點(diǎn)B、C、D、E、F、H中,連接兩個(gè)頂點(diǎn),使連接的線段與AG平行,并說(shuō)明理由;
(2)兩邊延長(zhǎng)AB、CD、EF、GH,使延長(zhǎng)線分別交于點(diǎn)P、Q、M、N,若AB=2,求四邊形PQMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于點(diǎn)E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要把殘破的輪片復(fù)制完整,已知弧上的三點(diǎn)A、B、C.
(1)用尺規(guī)作圖法找出所在圓的圓心(保留作圖痕跡,不寫(xiě)作法);
(2)設(shè)△ABC是等腰三角形,底邊BC=8cm,腰AB=5cm,求圓片的半徑R.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知CE是圓O的直徑,點(diǎn)B在圓O上由點(diǎn)E順時(shí)針向點(diǎn)C運(yùn)動(dòng)(點(diǎn)B不與點(diǎn)E、C重合),弦BD交CE于點(diǎn)F,且BD=BC,過(guò)點(diǎn)B作弦CD的平行線與CE的延長(zhǎng)線交于點(diǎn)A.
(1)若圓O的半徑為2,且點(diǎn)D為弧EC的中點(diǎn)時(shí),求圓心O到弦CD的距離;
(2)當(dāng)DFDB=CD2時(shí),求∠CBD的大小;
(3)若AB=2AE,且CD=12,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各句判定矩形的說(shuō)法對(duì)角線相等的四邊形是矩形;對(duì)角線互相平分且相等的四邊形是矩形;有一個(gè)角是直角的四邊形是矩形;有四個(gè)角是直角的四邊形是矩形;四個(gè)角都相等的四邊形是矩形;對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;是正確有幾個(gè)
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com