【題目】猜想:當點E在兩條直線AB,CD之外時(如圖12),BED,BD滿足怎樣的關系時,有ABCD?對猜想進行證明.

【答案】1)當∠B=BED+D時,有ABCD.證明見解析;(2)當∠B=BED+D時,有ABCD.證明見解析.

【解析】

1)過點EEFAB,由∠B=BED+D,結合題意,得到ABCD;

2)設BECD交于點O.結合題意推得∠BOD=B,從而得到ABCD

1)當∠B=BED+D時,有ABCD.證明如下:

如圖1,過點EEFAB,則∠B+FEB=180°,

∵∠B=BED+D

∴∠FEB+BED+D=180°,

EFCD,

ABCD;

2)當∠B=BED+D時,有ABCD.證明如下:

如圖2,設BECD交于點O

∵∠BOD=BED+D,∠B=BED+D

∴∠BOD=B,

ABCD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)四邊形ABCD中,已知∠ABC+ADC180°,ABAD,DAAB,點ECD的延長線上,∠BAC=∠DAE

1)求證:△ABC≌△ADE;

2)求證:CA平分∠BCD

3)如圖(2),設AF是△ABCBC邊上的高,求證:EC2AF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知,滿足點在軸的負半軸上,直角頂點軸上,點軸上方.

如圖1所示,若點與原點重合,點的坐標是,則點的坐標是 ;

如圖2所示,若點的坐標是,過點軸于,請求出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F是四邊形ABCD對角線AC上的兩點,ADBCDFBE,AE=CF

求證:(1AFD≌△CEB

2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請根據(jù)圖示的對話解答下列問題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在矩形ABCD中,AB<AD,對角線ACBD相交于點O,動點P由點A出發(fā),沿AB-BC→CD向點D運動設點P的運動路程為x,AOP的面積為y,yx的函數(shù)關系圖象如圖②所小示,則AD的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表,

x

-3

-2

-1

0

1

2

3

4

5

y

12

5

0

-3

-4

-3

0

5

12

下列四個結論:
①二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
②拋物線與y軸交點為(0,-3);
③二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
④本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結論的個數(shù)是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列一組圖形中的個數(shù),其中第1個圖中共有4個點,第2個圖中共有10個點,第3個圖中共有19個點,……,按此規(guī)律第5個圖中共有點的個數(shù)是( )

A. 31 B. 46 C. 51 D. 66

查看答案和解析>>

同步練習冊答案