【題目】猜想:當點E在兩條直線AB,CD之外時(如圖1和2),∠BED,∠B,∠D滿足怎樣的關系時,有AB∥CD?對猜想進行證明.
【答案】(1)當∠B=∠BED+∠D時,有AB∥CD.證明見解析;(2)當∠B=∠BED+∠D時,有AB∥CD.證明見解析.
【解析】
(1)過點E作EF∥AB,由∠B=∠BED+∠D,結合題意,得到AB∥CD;
(2)設BE與CD交于點O.結合題意推得∠BOD=∠B,從而得到AB∥CD.
(1)當∠B=∠BED+∠D時,有AB∥CD.證明如下:
如圖1,過點E作EF∥AB,則∠B+∠FEB=180°,
∵∠B=∠BED+∠D,
∴∠FEB+∠BED+∠D=180°,
∴EF∥CD,
∴AB∥CD;
(2)當∠B=∠BED+∠D時,有AB∥CD.證明如下:
如圖2,設BE與CD交于點O.
∵∠BOD=∠BED+∠D,∠B=∠BED+∠D,
∴∠BOD=∠B,
∴AB∥CD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)四邊形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,點E在CD的延長線上,∠BAC=∠DAE.
(1)求證:△ABC≌△ADE;
(2)求證:CA平分∠BCD;
(3)如圖(2),設AF是△ABC的BC邊上的高,求證:EC=2AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知,滿足點在軸的負半軸上,直角頂點在軸上,點在軸上方.
如圖1所示,若點與原點重合,點的坐標是,則點的坐標是 ;
如圖2所示,若點的坐標是,過點作軸于,請求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F是四邊形ABCD對角線AC上的兩點,AD∥BC,DF∥BE,AE=CF.
求證:(1)△AFD≌△CEB;
(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB<AD,對角線AC,BD相交于點O,動點P由點A出發(fā),沿AB-BC→CD向點D運動設點P的運動路程為x,△AOP的面積為y,y與x的函數(shù)關系圖象如圖②所小示,則AD的長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結論:
①二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
②拋物線與y軸交點為(0,-3);
③二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
④本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結論的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列一組圖形中的個數(shù),其中第1個圖中共有4個點,第2個圖中共有10個點,第3個圖中共有19個點,……,按此規(guī)律第5個圖中共有點的個數(shù)是( )
A. 31 B. 46 C. 51 D. 66
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com