【題目】已知拋物線的解析式yax2+bx+3x軸交于A、B兩點,點B的坐標為(﹣1,0)拋物線與y軸正半軸交于點C,ABC面積為6

1)如圖1,求此拋物線的解析式;

2P為第一象限拋物線上一動點,過PPGAC,垂足為點G,設點P的橫坐標為t,線段PG的長為d,求dt之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;

3)如圖2,在(2)的條件下,過點BCP的平行線交y軸上一點F,連接AF,在BF的延長線上取點E,連接PE,若PEAF,∠AFE+BEP180°,求點P的坐標.

【答案】1y=﹣x2+2x+3;(20t3;(3P()

【解析】

1)根據(jù)條件易求出A,B兩點的坐標,再利用待定系數(shù)法求解即可;

2)作PDx軸交AC于點E,如圖3,易知∠A45°,然后利用三角形的內(nèi)角和可得:∠P=∠A,則,再利用待定系數(shù)法求出直線AC的解析式,而點P的橫坐標已知,則可用含t的代數(shù)式表示出PE,問題即得解決;

3)如圖4,過點PPNBEBE于點N,過點CCHBE于點H,過點AAGBE于點G,設BEAC交于點M,根據(jù)AAS可證明△PEN≌△AFG,可得PNAG,然后再根據(jù)AAS證明△CHM≌△AGM,可得CMAM,于是由中點坐標公式可求得點M的坐標,再根據(jù)待定系數(shù)法可求得直線BM的解析式,進而求出直線CP的解析式,然后解由直線CP和拋物線的解析式組成的方程組即可求出點P的坐標.

解:(1)當x0時,y3,∴C0,3),∴OC3

B(﹣1,0),∴OB1,∴,解得:AB4,

OAABOB3,∴A3,0),

AB的坐標代入拋物線的解析式yax2+bx+3,得:,解得;,

∴拋物線的解析式為y=﹣x2+2x+3;

2)作PDx軸交AC于點E,如圖3,

OAOC=3,∴∠A45°

∵∠PEG=∠AED,∠PGE=∠EDA90°,∴∠P=∠A45°

,∴

設直線AC的解析式為:ykx+b,把A3,0),C03)兩點代入,得:,解得:,

∴直線ACy=﹣x+3,

Pt,﹣t2+2t+3),∵PDx軸,∴Et,﹣t+3),

PE=﹣t2+2t+3+t3=﹣t2+3t,∴

P為第一象限拋物線上一動點,∴0t3

,0t3

3)如圖4,過點PPNBEBE于點N,過點CCHBE于點H,過點AAGBE于點G,設BEAC交于點M

∵∠BEP+PEN180°,∠AFE+BEP180°,∴∠PEN=∠AFG,

∵∠PNE=∠AGF90°PEAF,

∴△PEN≌△AFGAAS),∴PNAG

CPBE,∴四邊形CPNH是矩形,∴PNCHAG,

∵∠CMH=∠AMG,∠CHM=∠AGM,

∴△CHM≌△AGMAAS),∴CMAM,∴M),

則可得過點B(-10)和點M,)兩點的直線解析式為:y=,

CPBM,∴直線CP的解析式為y=,

解方程組:,得:,

P).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖與y軸分別交于點A,且反比例函數(shù)的圖象在第一象限內(nèi)的交點為M.

1)求點M的坐標.

2)在x軸上是否存在點P,使AMMP?若存在,求出點P的坐標;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y2x4分別交坐標軸于A、B兩點,交雙曲線yx0)于C點,且sinCOB;

1)求雙曲線的解析式;

2)若過點B的直線yax+ba0)交y軸于D點,交雙曲線于點E,且ODAD12,求E點橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在網(wǎng)格紙中,、都是格點,以為圓心,為半徑作圓,用無刻度的直尺完成以下畫圖:(不寫畫法)

1)在圓①中畫圓的一個內(nèi)接正六邊形;

2)在圖②中畫圓的一個內(nèi)接正八邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是兩張形狀,大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,點AB均在小正方形的頂點上.

1)在圖1中畫出面積為5ABC,且ABC中有一個角為45°;

2)在圖2中畫出ABD,且∠ADB90°并直接寫出ABD的周長.(CD都在方格頂點上,每幅圖畫出一種情況即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=x2bxc的頂點為Q,與x軸交于A(-10)、B(5,0)兩點,與y軸交于點C

(1)求拋物線的解析式及其頂點Q的坐標;

(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標;

(3)如圖2,若點D是第一象限拋物線上的一個動點,過DDE⊥x軸,垂足為E

有一個同學說:在第一象限拋物線上的所有點中,拋物線的頂點Qx軸相距最遠,所以當點D運動至點Q時,折線DEO的長度最長,這個同學的說法正確嗎?請說明理由.

DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標;若不能,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某化工車間發(fā)生有害氣體泄漏,自泄漏開始到完全控制利用了40min,之后將對泄漏有害氣體進行清理,線段DE表示氣體泄漏時車間內(nèi)危險檢測表顯示數(shù)據(jù)y與時間x(min)之間的函數(shù)關(guān)系(0≤x≤40),反比例函數(shù)y=對應曲線EF表示氣體泄漏控制之后車間危險檢測表顯示數(shù)據(jù)y與時間x(min)之間的函數(shù)關(guān)系(40≤x≤?).根據(jù)圖象解答下列問題:

(1)危險檢測表在氣體泄漏之初顯示的數(shù)據(jù)是   ;

(2)求反比例函數(shù)y=的表達式,并確定車間內(nèi)危險檢測表恢復到氣體泄漏之初數(shù)據(jù)時對應x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點、為邊上的動點(不含端點),.下列三個結(jié)論:①當時,則;②;③的周長不變,其中正確結(jié)論的個數(shù)是(

A.0B.1

C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小華同學設計的作三角形的高線的尺規(guī)作圖的過程.

已知:如圖1ABC

求作:AB邊上的高線.

作法:如圖2,

①分別以A,C為圓心,大于

為半徑作弧,兩弧分別交于點DE;

作直線DE,交AC于點F;

以點F為圓心,FA長為半徑作圓,交AB的延長線于點M

連接CM

CM 為所求AB邊上的高線.

根據(jù)上述作圖過程,回答問題:

1)用直尺和圓規(guī),補全圖2中的圖形;

2)完成下面的證明:

證明:連接DADC,EAEC,

∵由作圖可知DA=DC =EA=EC

DE是線段AC的垂直平分線.

FA=FC

AC是⊙F的直徑.

∴∠AMC=______°___________________________________)(填依據(jù)),

CMAB

CM就是AB邊上的高線.

查看答案和解析>>

同步練習冊答案