【題目】某化工車間發(fā)生有害氣體泄漏,自泄漏開始到完全控制利用了40min,之后將對泄漏有害氣體進行清理,線段DE表示氣體泄漏時車間內危險檢測表顯示數據y與時間x(min)之間的函數關系(0≤x≤40),反比例函數y=對應曲線EF表示氣體泄漏控制之后車間危險檢測表顯示數據y與時間x(min)之間的函數關系(40≤x≤?).根據圖象解答下列問題:
(1)危險檢測表在氣體泄漏之初顯示的數據是 ;
(2)求反比例函數y=的表達式,并確定車間內危險檢測表恢復到氣體泄漏之初數據時對應x的值.
【答案】(1)20(2)車間內危險檢測表恢復到氣體泄漏之初數據時對應x的值是160
【解析】試題分析:(1)當時,設y與x之間的函數關系式為 把點代入,求出的值,即可得到函數解析式,把x=0代入,求得,即危險檢測表在氣體泄漏之初顯示的數據.
將x=40代入y=1.5x+20,求得點的坐標,把點代入反比例函數,求得反比例函數的解析式,把y=20代入反比例函數,即可求得車間內危險檢測表恢復到氣體泄漏之初數據時對應x的值.
試題解析:(1)當時,設y與x之間的函數關系式為 把點代入,得
得 ,
∴
當x=0時,
故答案為:20;
(2)將x=40代入y=1.5x+20,得y=80,
∴點E(40,80),
∵點E在反比例函數的圖象上,
∴得k=3200,
即反比例函數,
當y=20時, 得x=160,
即車間內危險檢測表恢復到氣體泄漏之初數據時對應x的值是160.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)經過點A(2,0),點B(3,3),BC⊥x軸于點C,連接OB,等腰直角三角形DEF的斜邊EF在x軸上,點E的坐標為(﹣4,0),點F與原點重合
(1)求拋物線的解析式并直接寫出它的對稱軸;
(2)△DEF以每秒1個單位長度的速度沿x軸正方向移動,運動時間為t秒,當點D落在BC邊上時停止運動,設△DEF與△OBC的重疊部分的面積為S,求出S關于t的函數關系式;
(3)點P是拋物線對稱軸上一點,當△ABP是直角三角形時,請直接寫出所有符合條件的點P坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩站相距480千米,一輛快車從甲站出發(fā),每小時行駛120千米,一輛慢車從乙站出發(fā),每小時行駛80千米.
(1)兩車同時開出,相向而行,多少小時后兩車相遇?
(2)兩車同時開出,相向而行,多少小時后兩車相距100千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,點分別是的中點,則下列四個判斷中不一定正確的是()
A. 四邊形一定是平行四邊形
B. 若,則四邊形是矩形
C. 若四邊形是菱形,則是等邊三角形
D. 若四邊形是正方形,則是等腰直角三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是某一計算程序,回答如下問題:
(1)當輸入某數后,第一次得到的結果為5,則輸入的數值x=_______;
(2)若輸入的x的值為16時,第1次得到的結果為8,第2次得到的結果為4,…,則第2019次得到的結果是_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為進一步推進青少年毒品預防教育“627“工程,切實提高廣大青少年識毒、防毒、拒毒的意識和能力,我市高度重視全國青少年禁毒知識競賽活動.針對某校七年級學生的知識競賽成績繪制了如圖不完整的統(tǒng)計圖表.
知識競賽成績頻數分布表
組別 | 成績(分數) | 人數 |
A | 95≤x<100 | 300 |
B | 90≤x<95 | a |
C | 85≤x<90 | 150 |
D | 80≤x<85 | 200 |
E | 75≤x<80 | b |
根據所給信息,解答下列問題.
(1)a=____,b=____.
(2)請求出C組所在扇形統(tǒng)計圖中的圓心角的度數.
(3)補全知識競賽成績頻數分布直方圖.
(4)已知我市七年級有180000名學生,請估算全市七年級知識競賽成績低于80分的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了改善教室空氣環(huán)境,某校九年級1班班委會計劃到朝陽花卉基地購買綠植.已知該基地一盆綠蘿與一盆吊蘭的價格之和是12元.班委會決定用60元購買綠蘿,用90元購買吊蘭,所購綠蘿數量正好是吊蘭數量的兩倍.
(1)分別求出每盆綠蘿和每盆吊蘭的價格;
(2)該校九年級所有班級準備一起到該基地購買綠蘿和吊蘭共計90盆,其中綠蘿數量不超過吊蘭數量的一半,該基地特地對吊蘭價格給出了如下的優(yōu)惠政策,一次性購買的吊蘭超過20盆時,超過部分的吊蘭每盆的價格打8折,根據該基地的優(yōu)惠信息,九年級購買這兩種綠植各多少盆時總費用最少?最少費用是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了解本校學生平均每天的課外做作業(yè)的時間情況,隨機抽取部分學生進行問卷調查,并將調查的結果分為A、B、C、D四個等級(設做作業(yè)時間為t小時,A:t<1;B:1≤t<1.5;C:1.5≤t<2;D:t≥2)根據調查結果繪成了如下兩幅不完整的統(tǒng)計圖.
請根據圖中信息,解答下列問題:
(1)本次調查中,抽取的學生人數是 ;
(2)圖2中α的度數是 ,并補全圖1條形統(tǒng)計圖;
(3)該校共有2800名學生名,請估計作業(yè)時間不少于2小時的人數為 ;
(4)在此次調查中,甲班有2人平均每天的作業(yè)時間超過2小時,乙班有3名學生平均每天作業(yè)時間超過2小時,現從這5人中選取2人參加座談會,請用樹狀圖或列表的方法,求出“所選的2人來自不同班級”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y1=2x-2的圖像與y軸交于點A,直線y2=-2x+6的圖像與y軸交于點B,兩者相交于點C.
(1)方程組的解是______;
(2)當y1>0與y2>0同時成立時,x的取值范圍為_____;
(3)求△ABC的面積;
(4)在直線y1=2x-2的圖像上存在異于點C的另一點P,使得△ABC與△ABP的面積相等,請求出點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com