【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A (3,0),二次函數(shù)圖象的對稱軸是x=1.下列結(jié)論:①b2>4ac;②ac>0; ③a﹣b+c>0; ④4a+2b+c<0.其中錯誤的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
【答案】C
【解析】解:∵二次函數(shù)y=ax2+bx+c過點A (3,0),對稱軸是x=1,
∴拋物線與x軸的另一交點坐標為(﹣1,0),
∴當x=﹣1時,y=0,即a﹣b+c=0,故③錯誤;
∵開口向下,與y軸的交點在x軸的上方,
∴a<0,c>0,
∴ac<0,故②錯誤;
∵拋物線與x軸有兩個交點,
∴方程ax2+bx+c=0有兩個不相等的實數(shù)根,
∴b2﹣4ac>0,即b2>4ac,故①正確;
∵當x=2時,y>0,
∴4a+2b+c>0,故④錯誤;
綜上可知錯誤的共有3個,
故選C.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為7,則GE+FH的最大值為( )
A.10.5
B.7 ﹣3.5
C.11.5
D.7 ﹣3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足為D,AD交⊙O于點E,連接OC、BE.若AE=6,OA=5,則線段DC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△ABC的頂點均在格點上,點A、B、C的坐標分別是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC繞點O順時針旋轉(zhuǎn)90°后得到△A1B1C1 .
(1)在正方形網(wǎng)格中作出△A1B1C1;
(2)在x軸上找一點D,使DB+DB1的值最小,并求出D點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點P從點A出發(fā)沿邊AC向點C以1cm/s的速度移動,點Q從C點出發(fā)沿CB邊向點B以2cm/s的速度移動.
(1)如果P、Q同時出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?
(2)是否存在某一時刻,使△PCQ的面積等于△ABC面積的一半,并說明理由.
(3)點P、Q在移動過程中,是否存在某一時刻,使得△PCQ的面積達到最大值,并說明利理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生騎電動車上學(xué)的現(xiàn)象越來越受到社會的關(guān)注.為此某媒體記者小李隨機調(diào)查了城區(qū)若干名中學(xué)生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:反對;C:贊成)并將調(diào)査結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整)請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)査中.共調(diào)査了名中學(xué)生家長;
(2)將圖①補充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果.請你估計我市城區(qū)80000名中學(xué)生家長中有多少名家長持反對態(tài)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿直線EF折疊,使點C與點A重合,折痕交AD于點E,交BC于點F,連接AF、CE,
(1)求證:四邊形AFCE為菱形;
(2)設(shè)AE=a,ED=b,DC=c.請寫出一個a、b、c三者之間的數(shù)量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax+bx+4與x軸交于點A(-3,0)和B(2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,若點D為CB的中點,將線段DB繞點D旋轉(zhuǎn),點B的對應(yīng)點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;
(3)如圖2,若點D為直線BC或直線AC上的一點,E為x軸上一動點,拋物線
對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com