【題目】如圖,△ABC中,AB=BC,∠ABC=120°,點E是AC上一點,連接BE,且∠BEC=50°,D為點B關(guān)于直線AC的對稱點,連接CD,將線段EB繞點E順時針旋轉(zhuǎn)40°得到線段EF,連接DF.
(1)請你在下圖中補全圖形;
(2)請寫出∠EFD的大小,并說明理由;
(3)連接CF,求證:DF=CF.
【答案】(1)圖見解析;(2)60°;理由見解析;(3)見解析.
【解析】
(1)根據(jù)題意補全圖形即可;
(2)連接ED,根據(jù)對稱性質(zhì)可得:ED=EB,∠BEC=∠DEC=50°,再根據(jù)旋轉(zhuǎn)性質(zhì)可得:BE=EF,∠BEF=40°,從而得出EF=ED,∠FED=∠BEC+∠DEC-∠BEF=60°,即可判定△EFD為等邊三角形,從而求出∠EFD的大小;
(3)連接BF并延長交DC于G,利用等邊對等角求出∠BCA,根據(jù)對稱的性質(zhì)可得:CB=CD,∠BCG=2∠BAC=2∠DCA=60°,再求出∠CBG的度數(shù),從而可判定BG⊥CD,再根據(jù)30°所對的直角邊是斜邊的一半,即可證出G是CD的中點,從而得到BG垂直平分CD,根據(jù)垂直平分線的性質(zhì)即可證DF=CF.
補全圖形如下所示:
(2)連接ED,
∵D為點B關(guān)于直線AC的對稱點
∴ED=EB,∠BEC=∠DEC=50°
∵EB繞點E順時針旋轉(zhuǎn)40°得到線段EF
∴BE=EF,∠BEF=40°
∴EF=ED,∠FED=∠BEC+∠DEC-∠BEF=60°
∴△EFD為等邊三角形
∴∠EFD=60°
(3)連接BF并延長交DC于G
∵AB=AC,∠ABC=120°
∴∠A=∠BCA=(180°-∠ABC)=30°
∵D為點B關(guān)于直線AC的對稱點
∴CB=CD,∠BCG=2∠BAC=2∠DCA=60°
∵BE=EF,∠BEF=40°
∴∠EBF=∠EFB=(180°-∠BEF)=70°
∠EBC=180°-∠BEC-∠BCE=100°
∴∠CBG=∠EBC-∠EBF=30°
∴∠BGC=180°-∠CBG-∠BCG=90°
∴BG⊥CD,CG=BC=CD
∴G為CD的中點
∴BG垂直平分CD
∴DF=CF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了進一步開展“陽光體育”活動,購買了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍費貴20元,購買羽毛球拍的費用比購買乒乓球拍的2000元要多,多出部分能購買25副乒乓球拍.
(1)若每副乒乓球拍的價格為x元,請你用含x的代數(shù)式表示該校購買這批乒乓球拍和羽毛球拍的總費用.
(2)若購買的兩種球拍數(shù)一樣,求x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2018年學(xué)校寢室數(shù)為64個,以后逐年增加,預(yù)計2020年寢室數(shù)達到121個,求2018至2020年寢室數(shù)量的年平均增長率;
(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點A(0,8),點B(6,8),若點P同時滿足下列條件:①點P到A,B兩點的距離相等;②點P到∠xOy的兩邊距離相等.則點P的坐標(biāo)為( ).
A.(3,5)B.(6,6)C.(3,3)D.(3,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以等邊△ABC的邊AC為腰作等腰△CAD,使AC=AD,連接BD,若∠DBC=41°,∠CAD=________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)“銳角三角函數(shù)”中發(fā)現(xiàn),將如圖所示的矩形紙片ABCD沿過點 B的直線折疊,使點A落在BC上的點E處,還原后,再沿過點E的直線折疊,使點A落在BC上的點F處,這樣就可以求出67.5°角的正切值是
A. +1 B. +1 C. 2.5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC的邊AC上取一點,使得AB=AD,若點D恰好在BC的垂直平分線上,寫出∠ABC與∠C的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,AE⊥BC于點E,點F,G分別是AB,AD的中點,連接EF,F(xiàn)G,若∠EFG=90°,則FG的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com