【題目】圖①是一個三角形,分別連接這個三角形三邊的中點得到圖②,再分別連接圖②中間小三角形三邊的中點,得到圖③.
(1)圖②有______個三角形;圖③有______個三角形;
(2)按上面的方法繼續(xù)下去,第n個圖形中有_________個三角形(用n的代數(shù)式表示).
(3)是否存在正整數(shù)n,使得第n個圖形中存在2019個三角形?如果存在,請求出n的值;如果不存在,請說明理由。
【答案】(1)5,9;(2)4n﹣3;(3)不存在,理由見解析
【解析】
(1)根據(jù)圖形的變化可發(fā)現(xiàn)每個圖形比前一個圖形多4個三角形,結合圖①有一個三角形即可得出結論;(2)根據(jù)圖形的變化可發(fā)現(xiàn)每個圖形比前一個圖形多4個三角形,而圖形①只有一個三角形,用含n的代數(shù)式表示出結論即可;(3)結合(2)的結論,令三角形的個數(shù)等于2019,看n的值是否為整數(shù),是的話則第n個圖形就是所求,如果不是,則不存在.
解:(1)圖②中有5個三角形,圖③中有9個三角形.
故答案為:5,9;
(2)依題意得:n=1時,有1個三角形;
n=2時,有5個三角形;
n=3時,有9個三角形;
∴當n=n時,有(4n﹣3)個三角形.
故答案為:4n﹣3;
(3)不存在
假設存在正整數(shù)n,
使得第n個圖形中有2019個三角形,
根據(jù)題意得:4n﹣3=2019,
解得:n=,不是整數(shù),
故不存在正整數(shù)n,使得第n個圖形中有2019個三角形
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于、兩點。
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出的x的取值范圍;
(3)求的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】攀枝花芒果由于品質高、口感好而聞名全國,通過優(yōu)質快捷的網(wǎng)絡銷售渠道,小明的媽媽先購買了2箱A品種芒果和3箱B品種芒果,共花費450元;后又購買了l箱A品種芒果和2箱B品種芒果,共花費275元(每次兩種芒果的售價都不變).
(1)問A品種芒果和B品種芒果的售價分別是每箱多少元?
(2)現(xiàn)要購買兩種芒果共18箱,要求B品種芒果的數(shù)量不少于A品種芒果數(shù)量的2倍,但不超過A品種芒果數(shù)量的4倍,請你設計購買方案,并寫出所需費用最低的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年11月1日是重慶城市花博會在重慶江北嘴中央商務區(qū)舉行,商務區(qū)附近的某花店抓住商機,從11月1日開始銷售A、B兩種花束,A花束每束利潤率是40%,B種花束每束利潤率是20%,當日,A種花束的銷量是B種花束銷量的,這兩種花束的總利潤率是30%;11月2日在A、B兩種花束利潤率保持不變的情況下,若要想當日的總利潤率達到35%,則A花束的銷量與B花束的銷量之比是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線AB:y= -+b交y軸于點A(0,1),交x軸于點B,直線x=1交AB于點D,交x軸于點E,P是直線x=1上的一動點,且在點D的上方,設P(1,n).
(1)求直線ABd解析式和點B的坐標;
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3) 當 =2時,
①求出點P的坐標;②在①的條件下,以PB為邊在第一象限作等腰直角△BPC,直接寫出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在相鄰兩點距離為1的點陣紙上(左右相鄰或上下相鄰的兩點之間的距離都是1個單位長度),三個頂點都在點陣上的三角形叫做點陣三角形,請按要求完成下列操作:
(1)將點陣△ABC水平向右平移4個單位長度,再豎直向上平移5個單位長度,畫出平移后的△A1B1C1;
(2)連接AA1、BB1,則線段AA1、BB1的位置關系為 、數(shù)量關系為 .估計線段AA1的長度大約在 <AA1< 單位長度:(填寫兩個相鄰整數(shù));
(3)畫出△ABC邊AB上的高CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(5,3),點B(-3,3),過點A的直線(m為常數(shù))與直線x=1交于點P,與x軸交于點C,直線BP與x軸交于點D。
(1)求點P的坐標;
(2)求直線BP的解析式,并直接寫出△PCD與△PAB的面積比;
(3)若反比例函數(shù)(k為常數(shù)且k≠0)的圖象與線段BD有公共點時,請直接寫出k的最大值或最小值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+4(k≠0)與x軸、y軸分別交于點B,A,直線y=-2x+1與y軸交于點C,與直線y=kx+4交于點D,△ACD的面積是 .
(1)求直線AB的表達式;
(2)設點E在直線AB上,當△ACE是直角三角形時,請直接寫出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明將一根長為20厘米的鐵絲剪成兩段,然后分別圍成兩個正方形。設其中一段鐵絲長為x厘米。
(1)設較長的一段鐵絲長為xcm,請計算出這兩個正方形的面積之差;
(2)是否存在合適的x的值,使兩個正方形的面積剛好相差5cm2?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com