【題目】如圖,拋物線yax2+bx+c的頂點(diǎn)為A(﹣3,3),且與y軸交于點(diǎn)B(0,5),若平移該拋物線,使其頂點(diǎn)A沿y=﹣x由(﹣3,3)移動(dòng)到(2,﹣2),此時(shí)拋物線與y軸交于點(diǎn)B,則BB的長度為________

【答案】6

【解析】

先運(yùn)用待定系數(shù)法求出原拋物線的解析式,再根據(jù)平移不改變二次項(xiàng)系數(shù),得出平移后的拋物線解析式,求出B′的坐標(biāo),進(jìn)而得出BB′的長度.

拋物線y=ax2+bx+c頂點(diǎn)為A(-3,3),

y=a(x+3)2+3,

∵與y軸交于點(diǎn)B(0,5),

5=a(0+3)2+3,

解得:a=,

∴頂點(diǎn)為A(-3,3)的拋物線為y=(x+3)2+3,

頂點(diǎn)A沿y=-x由(-3,3)移動(dòng)到(2,-2)的拋物線為y=(x-2)2-2,

y=x2-x-,

得點(diǎn)B′(0,-),BB′的長度為5+=6

故答案為:6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平行四邊形ABCD中,AM=CN.求證:四邊形MBND是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件中不能確定四邊形ABCD是平行四邊形的是

A.,B.,

C.,D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根;

2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有下列問題:今有勾五步,股十二步,問勾中容方幾何?其意思為今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?該問題的答案是________步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ACB=90°AC=BC=4.

(1)尺規(guī)作圖:將ABCAC的中點(diǎn)O為旋轉(zhuǎn)180°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B(保留作圖痕跡,不寫做法);

(2)求點(diǎn)B與點(diǎn)B之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的中線, 是線段 上一點(diǎn)(不與點(diǎn) 重合). 于點(diǎn) ,連結(jié)

(1)如圖1,當(dāng)點(diǎn)重合時(shí),求證:四邊形是平行四邊形

(2)如圖2,當(dāng)點(diǎn)不與重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.

(3)如圖3,延長于點(diǎn),若,且

①求的度數(shù);

②當(dāng),時(shí),求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平面直角坐標(biāo)系中的點(diǎn)A(a,1),t=ab﹣a2﹣b2(a,b是實(shí)數(shù)

(1)若關(guān)于x的反比例函數(shù)y=過點(diǎn)A,求t的取值范圍.

(2)若關(guān)于x的一次函數(shù)y=bx過點(diǎn)A,求t的取值范圍.

(3)若關(guān)于x的二次函數(shù)y=x2+bx+b2過點(diǎn)A,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,AD,BD⊙O的弦,BC⊙O的切線,切點(diǎn)為B,OC∥AD,BA,CD的延長線相交于點(diǎn)E.

(1)求證:DC⊙O的切線;

(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案