【題目】三種不同類型的紙板的長寬如圖所示,其中A類和C類是正方形,B類是長方形,現(xiàn)A類有1塊,B類有4塊,C類有5塊. 如果用這些紙板拼成一個正方形,發(fā)現(xiàn)多出其中1塊紙板,那么拼成的正方形的邊長是( )
A. m+n B. 2m+2n C. 2m+n D. m+2n
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(3x2y)2(﹣15xy3)÷(﹣9x4y2)
(2)(2a﹣3)2﹣(1﹣a)2
(3)先化簡,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個小正方形,其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,變成了右圖,如果繼續(xù)“生長”下去 ,它將變得“枝繁葉茂”,請你算出“生長”了2018次后形成的圖形中所有的正方形的面積和是( )
A. 2017 B. 2018 C. 2019 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連接四邊形不相鄰兩個頂點的線段叫做四邊形的對角線,如圖1,四邊形ABCD中線段AC、線段BD就是四邊形ABCD 的對角線.把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD的平方和與BC,AD的平方和之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)______
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,∠ABC和∠DCB的平分線相交于梯形中位線EF上的一點P , 若EF=2,則梯形ABCD的周長為( )
A.12
B.10
C.8
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梯形ABCD中AD∥BC , E是AB的中點,過E作兩底的平行線交DC于F , 則下面結(jié)論錯誤的是( )
A.EF平分線段AC
B.梯形上下底間任意兩點的連線段被EF平分
C.梯形EBCF與梯形AEFD周長之差的絕對值等于梯形兩底之差的絕對值
D.梯形EBCF的面積比梯形AEFD的面積大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形,矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應(yīng)保證相似圖形的“接近度”相等.設(shè)菱形相鄰兩個內(nèi)角的度數(shù)分別為m和n , 將菱形的“接近度”定義為|m-n|,于是,|m-n|越小,菱形越接近于正方形.若菱形的一個內(nèi)角為70°,則該菱形的“接近度”等于;當(dāng)菱形的“接近度”等于時,菱形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=kx+b的圖象如圖所示,則一元二次方程x2+x+k﹣1=0根的存在情況是( )
A.沒有實數(shù)根
B.有兩個相等的實數(shù)根
C.有兩個不相等的實數(shù)根
D.無法確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com