【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計圖中,m的值是

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

【答案】(1)50,30%;(2)作圖見解析;(3)

【解析】

試題分析:(1)由舞蹈的人數(shù)除以占的百分比求出調(diào)查學(xué)生總數(shù),確定出扇形統(tǒng)計圖中m的值;

(2)求出繪畫與書法的學(xué)生數(shù),補(bǔ)全條形統(tǒng)計圖即可;

(3)列表得出所有等可能的情況數(shù),找出恰好為一男一女的情況數(shù),即可求出所求概率.

試題解析:(1)20÷40%=50(人),15÷50=30%;

故答案為:50;30%;

(2)50×20%=10(人),50×10%=5(人),如圖所示:

(3)5﹣2=3(名),選修書法的5名同學(xué)中,有3名男同學(xué),2名女同學(xué),

所有等可能的情況有20種,其中抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的情況有12種,則P(一男一女)==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)A的雙曲線y=(x0)同時經(jīng)過點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為,AOB=OBA=45°,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(a是常數(shù),a0),下列結(jié)論正確的是(

A.當(dāng)a=1時,函數(shù)圖象經(jīng)過點(diǎn)(﹣1,1)

B.當(dāng)a=﹣2時,函數(shù)圖象與x軸沒有交點(diǎn)

C.若a0,函數(shù)圖象的頂點(diǎn)始終在x軸的下方

D.若a0,則當(dāng)x1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合:
(1)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);

(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN,ND,BM之間的數(shù)量關(guān)系,并說明理由.

(3)在圖①中,連接BD分別交AE,AF于點(diǎn)M,N,若DN=3 ,BM=3 ,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且pq),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=

例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣16﹣24﹣3,所以3×4是12的最佳分解,所以F(12)=

(1)如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).

求證:對任意一個完全平方數(shù)m,總有F(m)=1;

(2)如果一個兩位正整數(shù)t,t=10x+y(1xy9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”;

(3)在(2)所得“吉祥數(shù)”中,求F(t)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:2x-8=。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【感知】如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG. 【拓展】如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.
【應(yīng)用】如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的內(nèi)角和是360°,則這個多邊形的邊數(shù)為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國企業(yè)2016年已經(jīng)在“一帶一路”沿線國家建立了56個經(jīng)貿(mào)合作區(qū),直接為東道國增加了180 000個就業(yè)崗位.將180 000用科學(xué)記數(shù)法表示應(yīng)為(
A.18×104
B.1.8×105
C.1.8×106
D.18×105

查看答案和解析>>

同步練習(xí)冊答案