【題目】如圖,在RtABC中,∠ACB=90°.

(1)用尺規(guī)在邊BC上求作一點P,使PA=PB(不寫作法,保留作圖痕跡);

(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).

【答案】(1)作圖見解析;(2)30°.

【解析】

(1)作線段AB的垂直平分線即可;
(2)根據(jù)線段垂直平分線的性質可得BP=AP,根據(jù)等邊對等角可得∠B=PAB,然后再根據(jù)角平分線定義可得∠CAP=PAB,進而可得∠B=PAB=CAP,然后可得答案

解:(1)如圖:作線段AB的垂直平分線;

(2)PD是線段AB的垂直平分線,

PA=PB,

∴∠B=PAB,

AP平分∠CAB,

∴∠CAP=PAB,

∴∠B=PAB=CAP,

∵∠ACB=90°,

∴∠B=PAB+CAP=90°,

∴∠B=30°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點,連結OE,AC,且∠P=∠E,∠POE=2∠CAB.

(1)求證:CE⊥AB;

(2)求證:PC是⊙O的切線;

(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖 1,在ABC 中,∠ABC 的平分線 BF AC F 過點 F DFBC, 求證:BD=DF

2)如圖 2,在ABC 中,∠ABC 的平分線 BF 與∠ACB 的平分線 CF 相交于 F,過點 F DEBC,交直線 AB 于點 D,交直線 AC 于點 E.那么 BDCE,DE 之間存在什么關系?并證明這種關系.

3)如圖 3,在ABC 中,∠ABC 的平分線 BF 與∠ACB 的外角平分線 CF 相交于 F,過點 F DEBC,交直線 AB 于點D,交直線 AC 于點 E.那么 BD,CE,DE 之間存在什么關系?請寫出你的猜想.(不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一塊含30°角的直角三角板如圖,它的斜邊AB=8cm,里面空心DEF的各邊與ABC的對應邊平行,且各對應邊的距離都是1cm,那么DEF的周長是( )

A、5cm B、6cm C、6-cm D、3+cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在教學樓A處分別觀測對面實驗樓CD底部的俯角為45°,頂部的仰角為37°,已知教學樓和實驗樓在同一平面上,觀測點距地面的垂直高度AB15m,求實驗樓的垂直高度即CD長(精確到1m).

參考值:sin37°=0.60,cos37°=0.80,tan37°=0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調查的學生共有_______人,扇形統(tǒng)計圖中基本了解部分所對應扇形的圓心角為_______°;

(2)請補全條形統(tǒng)計圖;

(3)若該中學共有學生1800人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識 達到了解基本了解程度的總人數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A、B兩點,A點坐標是(﹣2,1),B點坐標(1,n);

(1)求出k,b,m,n的值;

(2)求AOB的面積;

(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做等鄰邊四邊形”.

(1)如圖 1,在四邊形 ABCD 中,添加一個條件使得四邊形 ABCD 等鄰邊四邊形.請寫出你添加的一個條件.

(2)小紅猜想:對角線互相平分的等鄰邊四邊形是菱形.她的猜想正確嗎?請說明理由.

(3)如圖 2,小紅作了一個RtABC,其中ABC=90°,AB=2,BC=1,并將 RtABC 沿ABC 的平分線 BB方向平移得到ABC,連結 AA′, BC′.小紅要使得平移后的四邊形 ABCA等鄰邊四邊形,應平移多少距離(即線段 BB 的長)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市政規(guī)劃出一塊矩形土地用于某項目開發(fā),其中,設計分區(qū)如圖所示,為矩形內一點,作于點于點,過點于點,其中丙區(qū)域用于主建筑區(qū),其余各區(qū)域均用于不同種類綠化.

若點的中點,求的長;

要求綠化占地面積不小于,規(guī)定乙區(qū)域面積為

①若將甲區(qū)域設計成正方形形狀,能否達到設計綠化要求?請說明理由;

②若主建筑丙區(qū)域不低于乙區(qū)域面積的,則的最大值為 (請直接寫出答案)

查看答案和解析>>

同步練習冊答案