【題目】如圖,平面直角坐標系的原點是正方形的中心,頂點,的坐標分別為、,把正方形繞原點逆時針旋轉得到正方形,則正方形與正方形重疊部分形成的正八邊形的邊長為( )
A.
B.
C.
D.
科目:初中數學 來源: 題型:
【題目】(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉過程中,當∠OAG′是直角時,求α的度數;
②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與軸交于點,與軸交于點,過點作軸,交拋物線于點,并過點作軸,垂足為.拋物線和反比例函數的圖象都經過點,四邊形的面積是.
求反比例函數、二次函數的解析式及拋物線的對稱軸;
如圖,點從點出發(fā)以每秒個單位的速度沿線段向點運動,點從點出發(fā)以相同的速度沿線段img src="http://thumb.zyjl.cn/questionBank/Upload/2019/05/12/08/1a8f9afd/SYS201905120854095644903087_ST/SYS201905120854095644903087_ST.023.png" width="24" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />向點運動,其中一個動點到達端點時,另一個也隨之停止運動.設運動時間為秒.
①當為何值時,四邊形為等腰梯形;
②設與對稱軸的交點為,過點作軸的平行線交于點,設四邊形的面積為,求面積關于時間的函數解析式,并指出的取值范圍;當為何值時,有最大值或最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知m,n(m<n)是關于x的方程(x–a)(x–b)=2的兩根,若a<b,則下列判斷正確的是
A. a<m<b<n B. m<a<n<b
C. a<m<n<d D. m<a<b<n
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小黃站在河岸上的點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船的俯角是,若小黃的眼睛與地面的距離是米,米,平行于所在的直線,迎水坡的坡度為,坡長米,則此時小船到岸邊的距離的長為( )米.(,結果保留兩位有效數字)
A. 11 B. 8.5 C. 7.2 D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,DE垂直平分AB,分別交AB,AC于點E,D.
(1)若∠ADE=40°,求∠DBC的度數;
(2)若BC=6,△CDB的周長為15,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是雙曲線y=上一點,過A作AB∥x軸,交直線y=﹣x于點B,點D是x軸上一點,連接BD交雙曲線于點C,連接AD,若BC:CD=3:2,△ABD的面積為,tan∠ABD=,則k的值為( 。
A. ﹣2 B. ﹣3 C. ﹣ D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面圖形上的任意兩點,,如果經過某種變換(如:平移、旋轉、軸對稱等)得到新圖形上的對應點,,保持,我們把這種對應點連線相等的變換稱為“同步變換”.對于三種變換:
①平移、②旋轉、③軸對稱,
其中一定是“同步變換”的有________(填序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com