【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

(1)直線BF垂直直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖①),求證:AE=CG

(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長(zhǎng)線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.

【答案】(1)見解析;(2)見解析.

【解析】

(1)首先根據(jù)點(diǎn)DAB中點(diǎn),∠ACB=90°,可得出∠ACD=BCD=45°,判斷出AEC≌△CGB,即可得出AE=CG;
(2)根據(jù)垂直的定義得出∠CMA+MCH=90°,BEC+MCH=90°,再根據(jù)AC=BC,ACM=CBE=45°,得出BCE≌△CAM,進(jìn)而證明出BE=CM.

(1)證明:因?yàn)橹本垂直

所以∠CFB=90°,所以∠ECB+CBF=90°.

又因?yàn)?/span>,所以

因?yàn)辄c(diǎn)的中點(diǎn),所以

所以,

所以.

因?yàn)?/span>,所以.

因?yàn)椤?/span>ACE=CBF,DCB=A,AC=BC,所以CAE≌△BCG,所以AE=CG.

.

(2)解:BE=CM.證明: 因?yàn)?/span> ACB=90°,所以 ACH +BCF=90°.

因?yàn)?/span> CHAM,即∠CHA=90°,所以 ACH +CAH=90°,所以 BCF=CAH.

BCECAM,BC=CA ,BCF=CAH,

由(1)知∠CBE=ACM,

所以BCE≌△CAM.所以BE=CF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點(diǎn)D,則圖中陰影部分的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直立于地面上的電線桿AB,在陽(yáng)光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,B、C、D三點(diǎn)在同一條直線上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( 。

A. A與D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實(shí)數(shù),該二次函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)若該二次函數(shù)圖象經(jīng)過(guò)點(diǎn)(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.

(1)求證:BF=DF;

(2)如圖2,過(guò)點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連結(jié)FG交BD于點(diǎn)O.

①求證:四邊形BFDG是菱形;

②若AB=3,AD=4,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形的周長(zhǎng)為28cm,其中的一邊長(zhǎng)是另一邊長(zhǎng)的倍,求這個(gè)等腰三角形各邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,AB=AC.

(1)如圖1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求證:CD=BE;

(2)如圖2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的長(zhǎng);

(3)如圖3,在△ADE中,當(dāng)BD垂直平分AE于H,且∠BAC=2∠ADB時(shí),試探究CD2,BD2,AH2之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案