如圖,已知⊙O的半徑為2,圓心在坐標原點,AC,BD為⊙O的兩條相互垂直的弦,垂足為M(1,
),且AC⊥
軸,BD⊥
軸.則四邊形ABCD的面積為______________.
四邊形ABCD的面積等于兩個三角形△ABC和△ADC的面積,根據(jù)⊙O的半徑為2,M(1,
)利用垂徑定理得出AC、BD的長,從而得出答案.
解:連接OB、OC,設AC,BD分別交x,y軸于點F,E,
∴OB=OC=2
∵M(1,
),
∴OE=
,OF=1,
∴由勾股定理得BE=
,CF=
,
∴BD=
,AC=
∴S四邊形ABCD=S△ABC+S△ADC,
=
+
,
=
(BM+DM)
AC,
=
BD
AC,
=
×
×
,
=
.
故答案為:
.
練習冊系列答案
相關習題
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,AB是⊙O的弦,OC⊥AB于C,如果AB= 8,OC=3,那么⊙O的半徑為____________
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,已知正方形紙片ABCD的邊長為8,⊙0的半徑為2,圓心在正方形的中心上,將紙片按圖示方式折疊,使EA恰好與⊙O相切于點A ′(△EFA′與⊙O除切點外無重疊部分),延長FA′交CD邊于點G,則A′G的長是
.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,點A、B、C在⊙O上,AO∥BC,∠OAC=20°,則∠AOB的度數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
.(8分)如圖1,已知直線y=2x(即直線l
1)和直線y=—
x+4(即直線l
2),l
2與x軸相交于點A.點P從原點O出發(fā),向x軸的正方向作勻速運動,速度為每秒1個單位,同時點Q從A點出發(fā),向x軸的負方向作勻速運動,速度為每秒2個單位.設運動了t秒.
小題1:(1)求這時點P、Q的坐標(用t表示).
小題2:(2)過點P、Q分別作x軸的垂線,與l
1、l
2分別相交于點O
1、O
2(如圖1).
以O
1為圓心、O
1P為半徑的圓與以O
2為圓心、O
2Q為半徑的圓能否相切若能,求出t值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
兩圓的半徑分別為3和5,圓心距為7,則兩圓的位置關系是( ▲ )
A.相交 B.內切 C.外切 D.外離
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,扇形
OAB是圓錐的側面展開圖,若小正方形方格的邊長為1cm,則這個圓錐的底面半徑為( )
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,半徑為5的圓O中,如果弦
的長為8,那么圓心
到
的距離,即
的長等于
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
設⊙O的半徑為r,圓心O到直線L的距離為d,若直線L與⊙O有交點,則d與r的關系為( )
查看答案和解析>>