【題目】如圖,直線l1y=2x+1與直線l2y=mx+4相交于點(diǎn)P1b),與x軸交于A,B兩點(diǎn),

1)求b,m的值;

2)求ABP的面積;

3)垂直于x軸的直線x=a與直線l1,l2分別相交于CD,若線段CD長為2,求a的值.

【答案】1m=-1;(2;(3a=a=

【解析】

1)由點(diǎn)P1,b)在直線l1上,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可求出b值,再將點(diǎn)P的坐標(biāo)代入直線l2中,即可求出m值;(2)根據(jù)解析式求得A、B的坐標(biāo),然后根據(jù)三角形面積公式即可求得;(3)由點(diǎn)C、D的橫坐標(biāo),即可得出點(diǎn)C、D的縱坐標(biāo),結(jié)合CD=2即可得出關(guān)于a的含絕對值符號的一元一次方程,解之即可得出結(jié)論.

1)把點(diǎn)P1b)代入y=2x+1,

b=2+1=3,

把點(diǎn)P1,3)代入y=mx+4,得m+4=3,

m=-1;

2)∵L1y=2x+1L2y=-x+4,

A-,0B4,0

3)解:直線x=a與直線l1的交點(diǎn)C為(a,2a+1

與直線l2的交點(diǎn)D為(a,-a+4).

CD=2,

|2a+1--a+4|=2,

|3a-3|=2

3a-3=23a-3=-2,

a=a=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電商時代使得網(wǎng)購更加便捷和普及.小張響應(yīng)國家號召,自主創(chuàng)業(yè),開了家淘寶店.他購進(jìn)一種成本為100/件的新商品,在試銷中發(fā)現(xiàn):銷售單價x(元)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.

1)求yx之間的函數(shù)關(guān)系式;

2)若某天小張銷售該產(chǎn)品獲得的利潤為1200元,求銷售單價x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,AD是ABC的角平分線,DEBA交AC于點(diǎn)E,DFCA交AB于點(diǎn)F,已知CD=3.

(1)求AD的長;

(2)求四邊形AEDF的周長.(注意:本題中的計算過程和結(jié)果均保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)M,N分別是AC,BC的中點(diǎn).

(1)AC8 cm,CB6 cm,求線段MN的長;

(2)C為線段AB上任一點(diǎn),滿足ACCBa,其他條件不變,你能猜想MN的長度嗎?寫出你的結(jié)論并說明理由;

(3)若點(diǎn)C在線段AB的延長線上,且滿足ACBCb,M,N分別為AC,BC的中點(diǎn),你能猜想MN的長度嗎?請畫出圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(3,3)、B(4,0)和原點(diǎn)O.P為二次函數(shù)圖象上的一個動點(diǎn),過點(diǎn)Px軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.

(1)求直線OA和二次函數(shù)的解析式;

(2)當(dāng)點(diǎn)P在直線OA的上方時,

①當(dāng)PC的長最大時,求點(diǎn)P的坐標(biāo);

②當(dāng)SPCO=SCDO時,求點(diǎn)P的坐標(biāo).

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上的點(diǎn)A、B、C、DE表示連續(xù)的五個整數(shù),對應(yīng)數(shù)分別為ab、c、de.

1)若,則代數(shù)式________;

2)若c是最小的正整數(shù),求的值;

3)若,數(shù)軸上的點(diǎn)M表示的實數(shù)為mma、bc、d、e不同),且滿足,則m的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空,完成下列說理過程

如圖,點(diǎn)A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC

(1)求∠DOE的度數(shù);

(2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因為OD是∠AOC的平分線,

所以∠COD=AOC

因為OE是∠BOC的平分線,

所以∠COE=

所以∠DOE=COD+   =(AOC+BOC)=AOB=   °.

(2)(1)可知

BOE=COE=   ﹣∠COD=   °.

所以∠AOE=   ﹣∠BOE=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將組織七年級學(xué)生春游一天,由王老師和甲、乙兩同學(xué)到客車租賃公司洽談租車事宜

1兩同學(xué)向公司經(jīng)理了解租車的價格,公司經(jīng)理對他們說公司有45座和60座兩種型號的客車可供租用60座的客車每輛每天的租金比45座的貴100元王老師說我們學(xué)校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元,你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學(xué)想了一下,都說知道了價格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經(jīng)理問你們準(zhǔn)備怎樣租車,甲同學(xué)說我的方案是只租用45座的客車,可是會有一輛客車空出30個座位乙同學(xué)說我的方案只租用60座客車,正好坐滿且比甲同學(xué)的方案少用兩輛客車,王老師在旁聽了他們的談話說從經(jīng)濟(jì)角度考慮還有別的方案嗎?如果是你,你該如何設(shè)計租車方案,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,AB=CD,點(diǎn)EFBC上,且BF=CE

1)求證:ABE≌△DCF

2)試證明:以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案