【題目】如圖,已知Rt△ABC,∠C=90°,AC=3,BC=4.分別以點(diǎn)A、B為圓心畫圓.如果點(diǎn)C在⊙A內(nèi),點(diǎn)B在⊙A外,且⊙B與⊙A內(nèi)切,那么⊙B的半徑長r的取值范圍是 .
【答案】8<r<10
【解析】解:如圖1,當(dāng)C在⊙A上,⊙B與⊙A內(nèi)切時(shí), ⊙A的半徑為:AC=AD=4,
⊙B的半徑為:r=AB+AD=5+3=8;
如圖2,
當(dāng)B在⊙A上,⊙B與⊙A內(nèi)切時(shí),
⊙A的半徑為:AB=AD=5,
⊙B的半徑為:r=2AB=10;
∴⊙B的半徑長r的取值范圍是:8<r<10.
所以答案是:8<r<10.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解點(diǎn)和圓的三種位置關(guān)系的相關(guān)知識,掌握圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r,以及對圓與圓的位置關(guān)系的理解,了解兩圓之間有五種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交.兩圓圓心之間的距離叫做圓心距.兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,∠A的平分線把BC邊分成長度是3和4的兩部分,則平行四邊形ABCD周長是( )
A.22
B.20
C.22或20
D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩運(yùn)動員的射擊成績(靶心為10環(huán))統(tǒng)計(jì)如下表(不完全):
次數(shù) | 1 | 2 | 3 | 4 | 5 |
甲 | 10 | 8 | 9 | 10 | 8 |
乙 | 10 | 9 | 9 | a | b |
某同學(xué)計(jì)算出了甲的成績平均數(shù)是9,方差是
S甲2= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,請作答:
(1)在圖中用折線統(tǒng)計(jì)圖將甲運(yùn)動員的成績表示出來;
(2)若甲、乙射擊成績平均數(shù)都一樣,則a+b=;
(3)在(2)的條件下,當(dāng)甲比乙的成績較穩(wěn)定時(shí),請列舉出a、b的所有可能取值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y= 的圖象如圖所示,點(diǎn)P是y軸負(fù)半軸上一動點(diǎn),過點(diǎn)P作y軸的垂線交圖象于A,B兩點(diǎn),連接OA、OB.下列結(jié)論:
①若點(diǎn)M1(x1 , y1),M2(x2 , y2)在圖象上,且x1<x2<0,則y1<y2;
②當(dāng)點(diǎn)P坐標(biāo)為(0,﹣3)時(shí),△AOB是等腰三角形;
③無論點(diǎn)P在什么位置,始終有S△AOB=7.5,AP=4BP;
④當(dāng)點(diǎn)P移動到使∠AOB=90°時(shí),點(diǎn)A的坐標(biāo)為(2 ,﹣ ).
其中正確的結(jié)論個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宏興企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價(jià)為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:y= .
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?
(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,并求出第幾天時(shí),利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點(diǎn),且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),C點(diǎn)的坐標(biāo)為(5,3),D點(diǎn)的坐標(biāo)為(3,﹣1),小明發(fā)現(xiàn):線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,你認(rèn)為這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)和形是數(shù)學(xué)的兩個(gè)主要研究對象,我們經(jīng)常運(yùn)用數(shù)形結(jié)合、數(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題.下面我們來探究“由數(shù)思形,以形助數(shù)”的方法在解決代數(shù)問題中的應(yīng)用.
(1)探究一:求不等式|x﹣1|<2的解集
探究|x﹣1|的幾何意義
如圖①,在以O(shè)為原點(diǎn)的數(shù)軸上,設(shè)點(diǎn)A′對應(yīng)的數(shù)是x﹣1,有絕對值的定義可知,點(diǎn)A′與點(diǎn)O的距離為|x﹣1|,可記為A′O=|x﹣1|.將線段A′O向右平移1個(gè)單位得到線段AB,此時(shí)點(diǎn)A對應(yīng)的數(shù)是x,點(diǎn)B對應(yīng)的數(shù)是1.因?yàn)锳B=A′O,所以AB=|x﹣1|,因此,|x﹣1|的幾何意義可以理解為數(shù)軸上x所對應(yīng)的點(diǎn)A與1所對應(yīng)的點(diǎn)B之間的距離AB.
探究求方程|x﹣1|=2的解
因?yàn)閿?shù)軸上3和﹣1所對應(yīng)的點(diǎn)與1所對應(yīng)的點(diǎn)之間的距離都為2,所以方程的解為3,﹣1.
探究:
求不等式|x﹣1|<2的解集
因?yàn)閨x﹣1|表示數(shù)軸上x所對應(yīng)的點(diǎn)與1所對應(yīng)的點(diǎn)之間的距離,所以求不等式解集就轉(zhuǎn)化為求這個(gè)距離小于2的點(diǎn)對應(yīng)的數(shù)x的范圍.
請?jiān)趫D②的數(shù)軸上表示|x﹣1|<2的解集,并寫出這個(gè)解集.
(2)探究二:探究 的幾何意義
探究:
的幾何意義
如圖③,在直角坐標(biāo)系中,設(shè)點(diǎn)M的坐標(biāo)為(x,y),過M作MP⊥x軸于P,作MQ⊥y軸于Q,則P點(diǎn)坐標(biāo)為(x,0),Q點(diǎn)坐標(biāo)為(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,則MO= = = ,因此, 的幾何意義可以理解為點(diǎn)M(x,y)與點(diǎn)O(0,0)之間的距離MO.
探究:
的幾何意義
如圖④,在直角坐標(biāo)系中,設(shè)點(diǎn)A′的坐標(biāo)為(x﹣1,y﹣5),由探究二(1)可知,A′O= ,將線段A′O先向右平移1個(gè)單位,再向上平移5個(gè)單位,得到線段AB,此時(shí)點(diǎn)A的坐標(biāo)為(x,y),點(diǎn)B的坐標(biāo)為(1,5),因?yàn)锳B=A′O,所以AB= ,因此 的幾何意義可以理解為點(diǎn)A(x,y)與點(diǎn)B(1,5)之間的距離AB.
探究 的幾何意義
①請仿照探究二的方法,在圖⑤中畫出圖形,并寫出探究過程.
② 的幾何意義可以理解為:
(3)拓展應(yīng)用:
① + 的幾何意義可以理解為:點(diǎn)A(x,y)與點(diǎn)E(2,﹣1)的距離和點(diǎn)A(x,y)與點(diǎn)F(填寫坐標(biāo))的距離之和.
② + 的最小值為(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)M在以O(shè)為圓心,AB為直徑的半圓弧上運(yùn)動(點(diǎn)M不與點(diǎn)A、B 及 的中點(diǎn)F 重合),連接OM.過點(diǎn)M 作ME⊥AB于點(diǎn)E,以BE為邊在半圓同側(cè)作正方形BCDE,過點(diǎn)M作⊙O的切線交射線DC于點(diǎn)N,連接BM、BN.
(1)探究:如圖一,當(dāng)動點(diǎn)M在 上運(yùn)動時(shí);
①判斷△OEM∽△MDN是否成立?請說明理由;
②設(shè) =k,k是否為定值?若是,求出該定值,若不是,請說明理由;
③設(shè)∠MBN=α,α是否為定值?若是,求出該定值,若不是,請說明理由;
(2)拓展:如圖二,當(dāng)動點(diǎn)M 在 上運(yùn)動時(shí);
分別判斷(1)中的三個(gè)結(jié)論是否保持不變?如有變化,請直接寫出正確的結(jié)論.(均不必說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com