【題目】已知⊙O為△ABC的外接圓,點(diǎn)E是△ABC的內(nèi)心,AE的延長(zhǎng)線(xiàn)交BC于點(diǎn)F,交⊙O于點(diǎn)D
(1)如圖1,求證:BD=ED;
(2)如圖2,AD為⊙O的直徑.若BC=6,sin∠BAC= ,求OE的長(zhǎng).
【答案】
(1)證明:連接BE.
∵是△ABC的內(nèi)心,
∴∠ABE=∠CBE,∠BAD=∠CAD.
∵∠DBC=∠CAD.
∴∠DBC=∠BAD.
∵∠BED=∠BAD+∠ABE,
∴∠DBE=∠DEB.
∴BD=ED.
(2)解:如圖2所示;連接OB.
∵AD是直徑,A平分∠BAC,
∴AD⊥BC,且BD=FC=3.
∵∠BAC=∠BOD,sin∠BAC= ,BF=3,
∴OB=5.
∵在Rt△BOF中,BF=3,OB=5,
∴OF= =4.
∴DF=1.
在Rt△BDF中,BF2+DF2=BD2.
∴BD= .
∴DE= .
使用OE=5﹣ .
【解析】(1)連接BE.依據(jù)三角形的內(nèi)心的性質(zhì)以及圓周角定理證明∠DBE=∠DEB即可;(2)連接OB.先證明圓周角定理和三角形的內(nèi)心的性質(zhì)可知∠BAC=∠BOF,依據(jù)銳角三角函數(shù)的定義可求得OB的長(zhǎng),然后依據(jù)勾股定理可求得OF的長(zhǎng)于是得到DF的長(zhǎng),接下來(lái),在△BDF中,由勾股定理可求得BD的長(zhǎng),依據(jù)問(wèn)題(1)的結(jié)論可得到DE的長(zhǎng),從而求得OE的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= ;正確的是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,將△ABC以點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB邊延長(zhǎng)線(xiàn)上的點(diǎn)D處,則AC邊掃過(guò)的圖形(陰影部分)的面積是cm2 . (結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的切線(xiàn),BC為⊙O的直徑,AC與⊙O交于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),PF⊥BC交BC于點(diǎn)G,交AC于點(diǎn)F
(1)求證:ED是⊙O的切線(xiàn);
(2)求證:△CFP∽△CPD;
(3)如果CF=1,CP=2,sinA= ,求O到DC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)A、B、C在小正方形的頂點(diǎn)上,將△ABC向下平移4個(gè)單位、再向右平移3個(gè)單位得到△A1B1C1
(1)在網(wǎng)格中畫(huà)出△A1B1C1;
(2)計(jì)算線(xiàn)段AC在變換到A1C1的過(guò)程中掃過(guò)區(qū)域的面積(重疊部分不重復(fù)計(jì)算).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一筆直的海岸線(xiàn)l上有A、B兩個(gè)碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測(cè)得小船在它的北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長(zhǎng))和A、B兩個(gè)碼頭間的距離(結(jié)果都保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)C的坐標(biāo)為(3,4).頂點(diǎn)A在x軸的正半軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)頂點(diǎn)B,則k的值為( )
A.12
B.20
C.24
D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解“理化生實(shí)驗(yàn)操作”考試的備考情況,隨機(jī)抽取了一部分九年級(jí)學(xué)生進(jìn)行測(cè)試,測(cè)試結(jié)果分為“優(yōu)秀”、“良好”、“合格”、“不合格”四個(gè)等級(jí),分別記為A、B、C、D.根據(jù)測(cè)試結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
(1)本次測(cè)試共隨機(jī)抽取了名學(xué)生.請(qǐng)根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校九年級(jí)的600名學(xué)生全部參加本次測(cè)試,請(qǐng)估計(jì)測(cè)試成績(jī)等級(jí)在合格以上(包括合格)的學(xué)生約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com