【題目】如圖,△ABC是⊙O的內(nèi)接三角形.AE是⊙O的直徑,交BC于點G.過點A作AF⊥BC,AF分別與BC、⊙O交于點D、F,連接BE、CF.
(1)求證:∠BAE=∠CAF;
(2)若AB=8,AC=6,AG=5,求AF的長.
【答案】(1)詳見解析;(2)
【解析】
(1)由圓周角定理得出∠ABE=90°,得出∠BAE+∠BEA=90°,由AF⊥BC得出∠ACD+∠CAF =90°,由圓周角定理得出∠BEA=∠ACD,即可得出結(jié)論;
(2)先證明∠ABC=∠AFC,∠BAE=∠CAF得△ABG∽△AFC,得到即可得到答案.
解(1)∵AE是⊙O的直徑,
∴∠ABE=90°,
∴∠BAE+∠BEA=90°,
∵AF⊥BC,
∴∠ADC=90°,
∴∠ACD+∠CAF =90°,
又∵∠BEA=∠ACD,
∴∠BAE=∠CAF;
(2)∵∠ABC與∠AFC是的圓周角
∴∠ABC=∠AFC
∵∠BAE=∠CAF
∴△ABG∽△AFC
∴
∵AB=8,AC=6,AG=5
∴ 得
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;
(2)請畫出△ABC關(guān)于原點O成中心對稱的圖形△A2B2C2;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:是長方形紙片ABCD折疊的情況,紙片的寬度AB=8cm,長AD=10cm,AD沿點A對折,點D正好落在BC上的M處,AE是折痕.
(1)求CM的長;
(2)求梯形ABCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在游樂場坐過山車,某一分鐘內(nèi)過山車高度h(米)與時間t(秒)之間的函數(shù)圖象如圖所示.請結(jié)合圖象回答:
(1)①當(dāng)t=41秒時,h的值是多少?并說明它的實際意義;
②過山車所達到的最大高度是多少?
(2)請描述30秒后,高度h(米)隨時間t(秒)的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1為一藝術(shù)拱門,下部為矩形ABCD,AB、AD的長分別為m和4m,上部是圓心為O的劣弧CD,∠COD=120°.現(xiàn)欲以點B為支點將拱門放倒,放倒過程中矩形ABCD所在的平面始終與地面垂直,如圖2所示.設(shè)BC與地面水平線所成的角為,記拱門上的點到地面的距離為h,當(dāng)h取最大值時,此時為________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果三角形的兩個內(nèi)角∠α與∠β滿足∠α=2∠β,那么,我們將這樣的三角形稱為“倍角三角形”.如果一個等腰三角形是“倍角三角形”,那么這個等腰三角形的腰長與底邊長的比值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一拱橋的橋拱是圓弧形,已知橋拱的水面跨度AB(弧所對的弦的長)為8米,拱高CD(弧的中點到弦的距離)為2米.
(1)求橋拱所在圓的半徑長;
(2)如果水面AB上升到EF時,從點E測得橋頂D的仰角為α,且cotα=3,求水面上升的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知函數(shù)的圖像和反比例函數(shù)的在第一象限交于A點,其中點A的橫坐標(biāo)是1.
(1)求反比例函數(shù)的解析式;
(2)把直線平移后與軸相交于點B,且,求平移后直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位計劃購進三種型號的禮品共件,其中型號禮品件,型號禮品比型號禮品多件.已知三種型號禮品的單價如下表:
型號 | |||
單價(元/件) |
(1)求計劃購進和兩種型號禮品分別多少件?
(2)實際購買時,廠家給予打折優(yōu)惠銷售(如: 折指原價,在計劃總價額不變的情況下,準(zhǔn)備購進這批禮品.
①若只購進兩種型號禮品,且型禮品件數(shù)不超過型禮品的倍,求型禮品最多購進多少件?
②若只購進兩種型號禮品,它們的單價分別打折、折,均為整數(shù),且購進的禮品總數(shù)比計劃多件,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com