【題目】我國淡水資源短缺問題十分突出,節(jié)約用水已成為各地的一件大事.某校初三學生為了調查居民用水情況,隨機抽查了某小區(qū)10戶家庭的月用水量,結果如表所示:

月用水量(t

3

4

5

10

戶數(shù)

4

2

3

1

10戶家庭月用水量的平均數(shù)、中位數(shù)及眾數(shù)是( 。

A. 4.53,4B. 3,4.5,4C. 4.5,43D. 4,4.53

【答案】C

【解析】

找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).

解:平均數(shù)=×3×4+4×2+5×3+10×1=4.5;

這組數(shù)據(jù)是按從小到大排列的,第5、6位,都是4,則中位數(shù)為4;

因為3出現(xiàn)的次數(shù)最多,則該組數(shù)據(jù)的眾數(shù)為3
平均數(shù)、中位數(shù)及眾數(shù)是4.5,43

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角△ABC中,AB4,BC5,∠ACB45°,將△ABC繞點B按逆時針方向旋轉,得到△A1BC1

1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);

2)如圖2,連接AA1,CC1.若△ABA1的面積為16,求△CBC1的面積;

3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉過程中,點P的對應點是點P1,求線段EP1長度的最大值與最小值之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E,F分別在矩形ABCD的邊AB,BC上,連接EF,將BEF沿直線EF翻折得到HEF,AB8BC6,AEEB31

1)如圖1,當∠BEF45°時,EH的延長線交DC于點M,求HM的長;

2)如圖2,當FH的延長線經(jīng)過點D時,求tanFEH的值;

3)如圖3,連接AH,HC,當點F在線段BC上運動時,試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+6過點A(6,0),B(4,6),與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖1,直線l的解析式為y=x,拋物線的對稱軸與線段BC交于點P,過點P作直線l的垂線,垂足為點H,連接OP,求OPH的面積;

(3)把圖1中的直線y=x向下平移4個單位長度得到直線y=x-4,如圖2,直線y=x-4x軸交于點G.點P是四邊形ABCO邊上的一點,過點P分別作x軸、直線l的垂線,垂足分別為點EF.是否存在點P,使得以P,E,F為頂點的三角形是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數(shù)有 人;

(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;

(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(滿分10分)已知二次函數(shù)y=﹣x2+2x+m

1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;

2)如圖,二次函數(shù)的圖象過點A3,0),與y軸交于點B,求直線AB與這個二次函數(shù)的解析式;

3)在直線AB上方的拋物線上有一動點D,當D與直線AB的距離DE最大時,求點D的坐標,并求DE最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù),有下列結論:①其圖象與x軸一定相交;②若,函數(shù)在時,yx的增大而減;③無論a取何值,拋物線的頂點始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個點.其中所有正確的結論是___.(填寫正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AC=BC,∠ACB=90°AB=4,將ABC繞點A逆時針旋轉60°,得到ADE,連接CE,則CE等于(  )

A. 5B. 6C. 2+2D. 2+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

同步練習冊答案