【題目】如圖,拋物線 與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接BD.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(3)若點(diǎn)M是拋物線上的動(dòng)點(diǎn),過點(diǎn)M作MN∥x軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在坐標(biāo)平面內(nèi),以線段MN為對(duì)角線作正方形MPNQ,請(qǐng)寫出點(diǎn)Q的坐標(biāo).
【答案】(1),D(2,8);(2)(﹣1,)或(﹣3,﹣);(3)(2,)或(2,).
【解析】
試題分析:(1)由B、C的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式,再求其頂點(diǎn)D即可;
(2)過F作FG⊥x軸于點(diǎn)G,可設(shè)出F點(diǎn)坐標(biāo),利用△FBG∽△BDE,由相似三角形的性質(zhì)可得到關(guān)于F點(diǎn)坐標(biāo)的方程,可求得F點(diǎn)的坐標(biāo);
(3)由于M、N兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,可知點(diǎn)P為對(duì)稱軸與x軸的交點(diǎn),點(diǎn)Q在對(duì)稱軸上,可設(shè)出Q點(diǎn)的坐標(biāo),則可表示出M的坐標(biāo),代入拋物線解析式可求得Q點(diǎn)的坐標(biāo).
試題解析:
(1)把B、C兩點(diǎn)坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為 ,∵=,∴D(2,8);
(2)如圖1,過F作FG⊥x軸于點(diǎn)G,設(shè)F(x,),則FG=||,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴,當(dāng)點(diǎn)F在x軸上方時(shí),有,解得x=﹣1或x=6(舍去),此時(shí)F點(diǎn)的坐標(biāo)為(﹣1,);
當(dāng)點(diǎn)F在x軸下方時(shí),有,解得x=﹣3或x=6(舍去),此時(shí)F點(diǎn)的坐標(biāo)為(﹣3,﹣);
綜上可知F點(diǎn)的坐標(biāo)為(﹣1,)或(﹣3,﹣);
(3)如圖2,設(shè)對(duì)稱軸MN、PQ交于點(diǎn)O′,∵點(diǎn)M、N關(guān)于拋物線對(duì)稱軸對(duì)稱,且四邊形MPNQ為正方形,∴點(diǎn)P為拋物線對(duì)稱軸與x軸的交點(diǎn),點(diǎn)Q在拋物線的對(duì)稱軸上,設(shè)Q(2,2n),則M坐標(biāo)為(2﹣n,n),∵點(diǎn)M在拋物線的圖象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=或n=,∴滿足條件的點(diǎn)Q有兩個(gè),其坐標(biāo)分別為(2,)或(2,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連續(xù)四次拋擲一枚硬幣都是正面朝上,則“第五次拋擲正面朝上”是( )
A.必然事件B.不可能事件C.隨機(jī)事件D.小概率事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.7a+a=8a2 B.3x2y+2yx2=5x2y
C.8y-6y=2 D.3a+2b=5ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,拋物線y=ax2﹣2x﹣3與拋物線y=x2+mx+n關(guān)于y軸對(duì)稱,C2與x軸交于A、B兩點(diǎn),其中點(diǎn)A在點(diǎn)B的左側(cè).
(1)求拋物線C1,C2的函數(shù)表達(dá)式;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)在拋物線C1上是否存在一點(diǎn)P,在拋物線C2上是否存在一點(diǎn)Q,使得以AB為邊,且以A、B、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com