【題目】如圖,E是長方形ABCD的邊AB上的點,EF⊥DE交BC于點F
(1)求證:△ADE∽△BEF;
(2)設H是ED上一點,以EH為直徑作⊙O,DF與⊙O相切于點G,若DH=OH=3,求圖中陰影部分的面積(結(jié)果保留到小數(shù)點后面第一位,≈1.73,π≈3.14).
【答案】(1)見解析;(2)圖中陰影部分的面積約為6.2.
【解析】
(1)由條件可證∠AED=∠EFB,從而可證△ADE∽△BEF.
(2)由DF與⊙O相切,DH=OH=OG=3可得∠ODG=30°,從而有∠GOE=120°,并可求出DG、EF長,從而可以求出△DGO、△DEF、扇形OEG的面積,進而可以求出圖中陰影部分的面積.
(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠B=90°.
∵EF⊥DE,
∴∠DEF=90°.
∴∠AED=90°﹣∠BEF=∠EFB.
∵∠A=∠B,∠AED=∠EFB,
∴△ADE∽△BEF.
(2)解:∵DF與⊙O相切于點G,
∴OG⊥DG.
∴∠DGO=90°.
∵DH=OH=OG,
∴sin∠ODG=.
∴∠ODG=30°.
∴∠GOE=120°.
∴S扇形OEG==3π.
在Rt△DGO中,
cos∠ODG=.
∴DG=3.
在Rt△DEF中,
tan∠EDF=.
∴EF=3.
∴S△DEF=,
S△DGO=.
∴S陰影=S△DEF﹣S△DGO﹣S扇形OEG
=﹣3π
=.9﹣3π
≈9×1.73﹣3×3.14
=6.15
≈6.2
∴圖中陰影部分的面積約為6.2.
科目:初中數(shù)學 來源: 題型:
【題目】王亮同學善于改進學習方法,他發(fā)現(xiàn)對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學習.假設他用于解題的時間x(單位:分鐘)與學習收益量y的關系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學習收益量z的關系為z=,且用于回顧反思的時間不超過用于解題的時間.
(1)求王亮解題的學習收益量y與用于解題的時間x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學習收益總量最大?(學習收益總量=解題的學習收益量+回顧反思的學習收益量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△OAB在第一象限中,OA=AB,OA⊥AB,O是坐標原點,且函數(shù)y=正好過A,B兩點,BE⊥x軸于E點,則OE2﹣BE2的值為( 。
A. 3B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1、x2是關于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個實數(shù)根,使得(3x1-x2)(x1-3x2)=-80成立,求其實數(shù)a的可能值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,E是對角線AC上的一個動點,連結(jié)BE并延長交直線AD于點F.
(1)若AB=10,sin∠BAC=;
①求對角線AC的長;
②若BE=4,求AE的長;
(2)若點F在邊AD上,且=k,△BEC和四邊形ECDF的面積分別是S1和S2,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校李老師布置了兩道解方程的作業(yè)題:
選用合適的方法解方程:
(1)x(x+1)=2x;(2)(x+1)(x﹣3)=7
以下是王萌同學的作業(yè):
解:(1)移項,得x(x+1)﹣2x=0 分解因式得,x(x+1﹣2)=0 所以,x=0,或x﹣1=0 所以,x1=0,x2=1 | (2)變形得,(x+1)(x﹣3)=1×7 所以,x+1=7,x﹣3=1 解得,x1=6,x2=4 |
請你幫王萌檢查他的作業(yè)是否正確,把不正確的改正過來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校準備給長12米,寬8米的矩形室內(nèi)場地進行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設米.
甲 | 乙 | 丙 | |
單價(元/米2) |
(1)當時,求區(qū)域Ⅱ的面積.
(2)計劃在區(qū)域Ⅰ,Ⅱ分別鋪設甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設丙款白色瓷磚,
①在相同光照條件下,當場地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當為多少時,室內(nèi)光線亮度最好,并求此時白色區(qū)域的面積.
②三種瓷磚的單價列表如下,均為正整數(shù),若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為進一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.
(1)學生小紅計劃選修兩門課程,請寫出所有可能的選法;
(2)若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線交于O點,DE∥AC,CE∥BD,
(1)求證:四邊形OCED是矩形;
(2)若AD=5,BD=8,計算sin∠DCE的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com