【題目】化簡,求值
(1)5x2y+{xy﹣[5x2y﹣(7xy2+ xy)]﹣(4x2y+xy)}﹣7xy2 , 其中x=﹣ ,y=﹣16.
(2)A=4x2﹣2xy+4y2 , B=3x2﹣6xy+3y2 , 且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.
(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.
【答案】
(1)解:原式= xy﹣4x2y,當(dāng)x=﹣ ,y=﹣16時,原式=6
(2)解:先化簡4A+[(2A﹣B)﹣3(A+B)]=3A﹣4B,
把A=4x2﹣2xy+4y2 , B=3x2﹣6xy+3y2代入3A﹣4B=18xy.
由條件又知x=3,y=﹣4或x=﹣3,y=4,所求值均為﹣216
(3)解:原式=(m﹣3n)2+3+3n﹣m=(m﹣3n)2+﹣(m﹣3n)+3,由m﹣3n+4=0可知,m﹣3n=﹣4,
故原式=(﹣4)2﹣(﹣4)+3=23
【解析】(1)按去括號的法則去掉括號,然后合并同類項,化為最簡形式,最后再代入x,y的值算出結(jié)果 ;
(2)先化簡4A+[(2A﹣B)﹣3(A+B)]得3A﹣4B,然后代入A,B的值化簡為最簡形式 ,最后代入x,y的值算出結(jié)果 ;
(3)利用乘法分配律去括號,合并同類項得(m﹣3n)2+﹣(m﹣3n)+3,然后再整體代入算出結(jié)果 。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市實驗中學(xué)學(xué)生步行到郊外旅行.高一(1)班學(xué)生組成前隊,步行速度為4千米/時,高一(2)班學(xué)生組成后隊,速度為6千米/時.前隊出發(fā)1小時后,后隊才出發(fā),同時后隊派一名聯(lián)絡(luò)員騎自行車在兩隊之間不間斷地來回進(jìn)行聯(lián)絡(luò),他騎車的速度為12千米/時.
(1)后隊追上前隊需要多長時間?
(2)后隊追上前隊時間內(nèi),聯(lián)絡(luò)員走的路程是多少?
(3)兩隊何時相距2千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=x2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C(0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線BC的函數(shù)表達(dá)式;
(3)點E為y軸上一動點,CE的垂直平分線交CE于點F,交拋物線于P、Q兩點,且點P在第三象限.
①當(dāng)線段PQ 時,求tan∠CED的值;
②當(dāng)以C、D、E為頂點的三角形是直角三角形時,請直接寫出點P的坐標(biāo).
(參考公式:拋物線的頂點坐標(biāo)是)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(3,-2)關(guān)于y軸的對稱點的坐標(biāo)是( )
A. (-3,-2) B. (3,2)
C. (-3,2) D. (-3,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)平面上有一點A,且點A到x軸的距離為3,點A到y軸的距離恰為點A到x軸距離的2倍.若點A在第二象限,則點A的坐標(biāo)為( )
A. (-3,6) B. (-3,2) C. (-6,3) D. (-2,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠A=36°.
(1)作∠ABC的平分線BD,交AC于點D(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)條件下,比較線段DA與BC的大小關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式:①a0=1;②a2a3=a5;③2﹣2=﹣ ;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2 , 其中正確的是( )
A.①②③
B.①③⑤
C.②③④
D.②④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com