【題目】立方根等于它本身的數(shù)有( )
A. -1,0,1 B. 0,1 C. 0 D. 1
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個端點P旋轉(zhuǎn)一周,另一個端點A所形成的圖形叫做圓.就是說,到某個定點等于定長的所有點在同一個圓上.圓心在P(a,b),半徑為r的圓的方程可以寫為:(x-a)2+(y-b)2=r2.如:圓心在P(2,-1),半徑為5的圓的方程為:(x-2)2+(y+1)2=25.
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為:________; ②以B(-1,-2)為圓心, 為半徑的圓的方程為:________;
(2)根據(jù)以上材料解決以下問題:
如圖2,以B(-6,0)為圓心的圓與y軸相切于原點,C是☉B上一點,連接OC,作BD⊥OC垂足為D,延長BD交y軸于點E,已知sin∠AOC=.
①連接EC,證明EC是☉B的切線;
②在BE上是否存在一點P,使PB=PC=PE=PO,若存在,求P點坐標(biāo),并寫出以P為圓心,以PB為半徑的☉P的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面內(nèi)的點A(-2,5),若將平面直角坐標(biāo)系先向右平移3個單位長度,再向上平移4個單位長度,則點A在平移后的坐標(biāo)系中的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為菱形,點P為對角線BD上的一個動點.
(1)如圖1,連接AP并延長交BC的延長線于點E,連接 PC,求證:∠AEB=∠PCD.
(2)如圖1,當(dāng)PA=PD且PC⊥BE時,求∠ABC的度數(shù).
(3)連接AP并延長交射線BC于點E,連接 PC,若∠ABC=90°且△PCE是等腰三角形,求∠PEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組代數(shù)式中,沒有公因式的是( )
A. ax+y和x+y B. 2x和4y C. a-b和b-a D. -x2+xy和y-x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意解答
(1)探究:如圖①,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于點E,若AE=8,求四邊形ABCD的面積.
(2)應(yīng)用:如圖②,在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于點E,若AE=20,BC=10,CD=6,則四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡,求值
(1)5x2y+{xy﹣[5x2y﹣(7xy2+ xy)]﹣(4x2y+xy)}﹣7xy2 , 其中x=﹣ ,y=﹣16.
(2)A=4x2﹣2xy+4y2 , B=3x2﹣6xy+3y2 , 且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.
(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com