【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,和均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.
填空:①的度數(shù)為 ;
②線段AD,BE之間的數(shù)量關(guān)系為 .
(2)拓展探究:如圖2,和均為等腰直角三角形,,點(diǎn)A,D,E在同一直線上,CM為中DE邊上的高,連接BE,求的度數(shù),并說(shuō)明理由.
【答案】(1)①;②相等;(2),理由見(jiàn)解析
【解析】
(1)①由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).②由△ACD≌△BCE,可得出答案.
(2)仿照(1)中的解法可求出∠AEB的度數(shù).
解:(1)①∵∠ACB=∠DCE,∠DCB=∠DCB,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC=BC,
∠ACD=∠BCE,,
∴△ACD≌△BCE,
∴AD=BE,,
∴;
②相等理由:
∵△ACD≌△BCE,
∴AD=BE.
故答案為:相等.
(2)理由:如圖2,
∵和均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
在在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠ADC=∠BEC,
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°,
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫(xiě)有A,B,B.這些卡片除字母外完全相同,從中隨機(jī)摸出一張,記下字母后放回,充分洗勻后,再?gòu)闹忻鲆粡,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明現(xiàn)由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過(guò)點(diǎn)P,且y的值隨x值的增大而增大,則點(diǎn)P的坐標(biāo)可以為( )
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)場(chǎng)學(xué)習(xí):在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫(huà)一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為: _________ ;
(2)若△DEF三邊的長(zhǎng)分別為、、,請(qǐng)?jiān)趫D1的正方形網(wǎng)格中畫(huà)出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積;
(3)如圖2,一個(gè)六邊形的花壇被分割成7個(gè)部分,其中正方形PRBA,RQDC,QPFE的面積分別為13,10,17,且△PQR、△BCR、△DEQ、△AFP的面積相等,求六邊形花壇ABCDEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,E為邊上一點(diǎn),連結(jié)AE并延長(zhǎng)交直線DC于F,且CE=CF.
(1)如圖1,求證:AF是∠BAD的平分線;
(2)如圖2,若∠ABC=90°,點(diǎn)G是線段EF上一點(diǎn),連接DG、BD、CG,若∠BDG=45°,求證:CG=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面各問(wèn)題中給出的兩個(gè)變量x,y,其中y是x的函數(shù)的是
① x是正方形的邊長(zhǎng),y是這個(gè)正方形的面積;
② x是矩形的一邊長(zhǎng),y是這個(gè)矩形的周長(zhǎng);
③ x是一個(gè)正數(shù),y是這個(gè)正數(shù)的平方根;
④ x是一個(gè)正數(shù),y是這個(gè)正數(shù)的算術(shù)平方根.
A. ①②③B. ①②④C. ②④D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)(3x﹣1)(4x+5)=0
(2)4x2﹣8x﹣3=0(配方法)
(3)x(x+1)=3x+6
(4)(x﹣2)(x+4)=16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是半徑為cm的⊙O外一點(diǎn),PA,PB分別和⊙O切于點(diǎn)A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一點(diǎn),過(guò)C作⊙O的切線交PA,PB于點(diǎn)D,E.
(1)求△PDE的周長(zhǎng);
(2)若DE=cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校要從甲、乙兩名同學(xué)中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測(cè)試中, 他倆的成績(jī)分別如下表,請(qǐng)根據(jù)表中數(shù)據(jù)解答下列問(wèn)題:
第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | 80 分 | 80 分 |
(1)把表格補(bǔ)充完整:
(2)在這五次測(cè)試中,成績(jī)比較穩(wěn)定的同學(xué)是多少;若將 80 分以上(含 80 分) 的成績(jī)視為優(yōu)秀,則甲、乙兩名同學(xué)在這五次測(cè)試中的優(yōu)秀率分別是多少;
(3)歷屆比賽表明,成績(jī)達(dá)到80分以上(含 80分)就很可能獲獎(jiǎng),成績(jī)達(dá)到 90分以上(含90分)就很可能獲得一等獎(jiǎng),那么你認(rèn)為選誰(shuí)參加比賽比較合適?說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com