【題目】如圖,在正方形中,點(diǎn)E是對(duì)角線上一點(diǎn),連接.過點(diǎn)E作交的延長(zhǎng)線于點(diǎn)F.若,,則正方形的面積為______.
【答案】16
【解析】
由∠EHC=∠BHF,∠CEH=∠FBH=90°可判定△ECH∽△BFH,從而得到∠ECH=∠BFH;作輔助線可證明四邊形ENBM是正方形,根據(jù)正方形的性質(zhì)得EM=EN,由角角邊可證明△ENC≌△EMF,得CN=FM;因,可求MB的長(zhǎng)度,從而求得CN和BC的長(zhǎng),可求出正方形ABCD的面積.
解:過點(diǎn)E作EN⊥BC,EM⊥AB,分別交BC、AB于N、M兩點(diǎn),
且EF與BC相交于點(diǎn)H.
∵EF⊥CE,∠ABC=90°,∠ABC+∠HBF=180°,
∴∠CEH=∠FBH=90°,
又∵∠EHC=∠BHF,
∴△ECH∽△BFH(AA),
∴∠ECH=∠BFH,
∵EN⊥BC,EM⊥AB,四邊形ABCD是正方形,
∴四邊形ENBM是正方形,
∴EM=EN,∠ENC=∠EMF=90°,
在△ENC和△EMF中
∴△ENC≌△EMF(AAS)
∴CN=FM,
又∵在正方形ENBM中,
∴MB=BN=1,
∵BF=2
∴MF=CN=1+2=3
∴BC=4
∴正方形ABCD的面積為16
故答案為:16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,AC平分∠DAB.
(1)求證:AD⊥CD;
(2)若AD=2,AC=,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,已知、、三點(diǎn),其中、、滿足關(guān)系式, ≤.
(1)=_______; =________; =_______.
(2)如果點(diǎn)是第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),坐標(biāo)為.將四邊形的面積用表示,請(qǐng)你寫出關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點(diǎn),使得四邊形的面積與的面積相等?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,AC上的中線BD把三角形的周長(zhǎng)分為24㎝和30㎝的兩個(gè)部分,求三角形的三邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為10的菱形ABCD中,對(duì)角線BD=16,對(duì)角線AC,BD相交于點(diǎn)G,點(diǎn)O是直線BD上的動(dòng)點(diǎn),OE⊥AB于E,OF⊥AD于F.
(1)求對(duì)角線AC的長(zhǎng)及菱形ABCD的面積.
(2)如圖①,當(dāng)點(diǎn)O在對(duì)角線BD上運(yùn)動(dòng)時(shí),OE+OF的值是否發(fā)生變化?請(qǐng)說明理由.
(3)如圖②,當(dāng)點(diǎn)O在對(duì)角線BD的延長(zhǎng)線上時(shí),OE+OF的值是否發(fā)生變化?若不變,請(qǐng)說明理由;若變化,請(qǐng)?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】食品安全關(guān)乎民生,食品中添加過量的添加劑對(duì)人體有害,但適量的添加劑對(duì)人體無害且有利于食品的儲(chǔ)存.某飲料廠為了解A、B兩種飲料添加劑的添加情況,隨機(jī)抽檢了A種30瓶,B種70瓶,檢測(cè)發(fā)現(xiàn),A種每瓶比B種每瓶少1克添加劑,兩種共加入了添加劑270克,求A、B兩種飲料每瓶各加入添加劑多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線l:y=x+1交y軸于點(diǎn)A1,在x軸正方向上取點(diǎn)B1,使OB1=OA1;過點(diǎn)B1作A2B1⊥x軸,交l于點(diǎn)A2,在x軸正方向上取點(diǎn)B2,使B1B2=B1A2;過點(diǎn)B2作A3B2⊥x軸,交l于點(diǎn)A3,…記△OA1B1面積為S1,△B1A2B2面積為S2,△B2A3B3面積為S3,…,則S8等于( 。
A.28B.213C.216D.218
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為BC上一點(diǎn),BE=2CE,連接DE,F為DE中點(diǎn),以DF為直角邊作等腰Rt△DFG,連接BG,將△DFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)得△DF′G′,G′恰好落在BG的延長(zhǎng)線上,連接F′G,若BG=2,則S△GF′G′=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為方便市民通行,某廣場(chǎng)計(jì)劃對(duì)坡角為30°,坡長(zhǎng)為60 米的斜坡AB進(jìn)行改造,在斜坡中點(diǎn)D 處挖去部分坡體(陰影表示),修建一個(gè)平行于水平線CA 的平臺(tái)DE 和一條新的斜坡BE.
(1)若修建的斜坡BE 的坡角為36°,則平臺(tái)DE的長(zhǎng)約為多少米?
(2)在距離坡角A點(diǎn)27米遠(yuǎn)的G處是商場(chǎng)主樓,小明在D點(diǎn)測(cè)得主樓頂部H 的仰角為30°,那么主樓GH高約為多少米?
(結(jié)果取整數(shù),參考數(shù)據(jù):sin 36°=0.6,cos 36°=0.8,tan 36°=0.7,=1.7)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com