【題目】在平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“湘一比”,記為,如點(diǎn),則.
(1)若在直線上,求點(diǎn)的“湘一比”及直線與軸夾角的正切值;
(2)已知點(diǎn)的“湘一比”為,且在上,的半徑為,若點(diǎn)在上,求的“湘一比”的取值范圍;
(3)設(shè)、為正整數(shù),且,對(duì)一切實(shí)數(shù),如果直線與二次函數(shù)交于、,且,求點(diǎn)的“湘一比”的值.
【答案】(1);(2);(3)或
【解析】
(1)根據(jù)“湘一比”的定義求出a的值,即可得出結(jié)論;
(2)先確定出點(diǎn)Q的坐標(biāo),進(jìn)而判斷出直線OM和⊙Q相切時(shí),兩種情況即可得出kM的最大值和最小值,就是分界點(diǎn),即可得出結(jié)論;
(3)先求出x1=-3,x2=mt,進(jìn)而建立不等式組,得出m>2且(mn-6)2≤0,即可得出結(jié)論.
解:(1) 在直線上,
,
,
,此時(shí)直線與軸夾角的正切值為;
(2)由題意知,
,
,
在上,
或 (舍),
根據(jù)點(diǎn)的”縱橫比”知,直線和相切時(shí),一個(gè)是的最大值和另一個(gè)是最小值,
當(dāng) 時(shí), 最小, 此時(shí),
當(dāng)時(shí),最大,此時(shí),
(3)由題意知,,
,
,,
,
,
∵等于一切實(shí)數(shù)不等式恒成立,
,
為正整數(shù),
且
,
,
為正整數(shù),
或,,
或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤(rùn)W(元與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為等腰三角形ABC的外接圓,AB是⊙O的直徑,AB=12,P為上任意一點(diǎn)(不與點(diǎn)B,C重合),直線CP交AB的延長(zhǎng)線于點(diǎn)Q,⊙O在點(diǎn)P處的切線PD交BQ于點(diǎn)D,則下列結(jié)論:①若∠PAB=30°,則的長(zhǎng)為π;②若PD∥BC,則AP平分∠CAB;③若PB=BD,則PD=6;④無論點(diǎn)P在上的位置如何變化,CPCQ=108.其中正確結(jié)論的序號(hào)為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).
(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減小.
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.則下列說法正確的是________.(寫出所有正確說法的序號(hào))
①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;
②當(dāng)x=﹣2.1時(shí),[x]+(x)+[x)=﹣7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當(dāng)﹣1<x<1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個(gè)交點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(是常數(shù)).
(1)當(dāng)時(shí),該函數(shù)的圖象與直線有幾個(gè)公共點(diǎn)?說明理由;
(2)若該函數(shù)的圖象與軸只有一個(gè)公共點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)O為對(duì)角線AC、BD的交點(diǎn),點(diǎn)E為邊AB的中點(diǎn),△BED繞著點(diǎn)B旋轉(zhuǎn)至△BD1E1,如果點(diǎn)D、E、D1在同一直線上,那么EE1的長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com