【題目】如圖,在正方形ABCD中,E是CD上一點,DF⊥BE交BE的延長線于點G,交BC的延長線于點F.
(1)求證:△BCE≌△DCF.
(2)若∠DBE=∠CBE,求證:BD=BF.
(3)在(2)的條件下,求CE:ED的值.
【答案】
(1)解:證明:∵四邊形ABCD是正方形,
∴BC=DC,∠BCE=∠DCF=90°,
∴∠CBE﹢∠BEC=90°,
又∵BG⊥DF,
∴∠CBE﹢∠F=90°,
∴∠BEC=∠F,
在△BCE與△DCF中,
,
∴△BCE≌△DCF(AAS)
(2)解:證明:∵BG⊥DF
∴∠BGD=∠BGF
在△DBG與△FBG中,
,
∴△DBG≌△FBG(ASA),
∴BD=BF;
(3)解:解:延長AD、BG交于點H.
∵BD=BF,BG⊥DF,
∴∠DBG∠FBG,
∵AD∥BC,
∴∠H=∠FBG,
∴∠DBH=∠H,
∴DB=DH,
∵AH∥BC,
∴△BCE∽△HDE,
∴CE:DE=BC:DH,
∴CE:DE=BC:DB.
∵四邊形ABCD是正方形,
∴BC:BD=1: .
∴CE:DE=1: ,
∴CE:DE的值為 .
【解析】(1)根據四邊形ABCD是正方形可知BC=DC,∠BCE=∠DCF=90°,再由BG⊥DF,可知∠CBE﹢∠F=90°,根據AAS定理即可得出△BCE≌△DCF;(2)根據ASA定理得出△DBG≌△FBG,由全等三角形的性質即可得出結論;(3)延長AD、BG交于點H,由全等三角形的判定定理得出△BCE∽△HDE,再根據相似三角形的對應邊成比例即可得出結論.
【考點精析】通過靈活運用正方形的性質和相似三角形的判定與性質,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD與EF相交.
(1)圖中∠1和∠2分別在直線AB,CD的同_______,并且都在直線EF的_____,具有這樣位置關系的一對角叫做______;
(2)圖中∠2和∠8都在直線AB,CD____,并且分別在直線EF的___,具有這樣位置關系的一對角叫做_____;
(3)圖中∠2和∠7都在直線AB,CD____,且都在直線EF的____,具有這樣位置關系的一對角叫做______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大樹AB與大數CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以△ABC 的邊 AB,AC 向外作等邊三角形 ABD 和等邊三角形 ACE,線段 BE 與 CD 相交于點 O,連接 OA.
(1)求證:BE=DC;
(2)求∠BOD 的度數;
(3)求證:OA 平分∠DOE.
(4)猜想線段 OA、OB、OD 的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將四根長度相等的細木條首尾相接,用釘子釘成四邊形ABCD,轉動這個四邊形,使它形狀改變,當∠C=90°時,測得AC=2 ,當∠C=120°時,如圖2,AC=( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結DE.
(1)當∠BAD=60°,求∠CDE的度數;
(2)當點D在BC(點B、C除外)邊上運動時,試寫出∠BAD與∠CDE的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點F是線段AC上一點,點E是線段BC上一點,BF與AE交于點H,∠BAE=∠FBC,AG⊥BF,∠GAF:∠BEA=1:10,則∠BAE=_____°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB、CD交于點O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(題中所說的角均是小于平角的角).
(1)求∠AOE的度數;
(2)請寫出∠AOC在圖中的所有補角;
(3)從點O向直線AB的右側引出一條射線OP,當∠COP=∠AOE+∠DOP時,求∠BOP的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com