【題目】如圖,經(jīng)過點(diǎn)A(0,﹣4)的拋物線y=x2+bx+c與x軸相交于點(diǎn)B(﹣1,0)和C,O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y=x2+bx+c向上平移個單位長度,再向左平移m(m>0)個單位長度,得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)將x軸下方的拋物線圖象關(guān)于x軸對稱,得到新的函數(shù)圖象C,若直線y=x+k與圖象C始終有3個交點(diǎn),求滿足條件的k的取值范圍.
【答案】(1)、y=;(2)、<m<;(3)、1或
【解析】
試題分析:(1)、該拋物線的解析式中只有兩個待定系數(shù),只需將A、B兩點(diǎn)坐標(biāo)代入即可得解.(2)、首先根據(jù)平移條件表示出移動后的函數(shù)解析式,進(jìn)而用m表示出該函數(shù)的頂點(diǎn)坐標(biāo),將其代入直線AB、AC的解析式中,即可確定P在△ABC內(nèi)時m的取值范圍.(3)、先根據(jù)函數(shù)解析式畫出圖形,然后結(jié)合圖形找出拋物線與x軸有三個交點(diǎn)的情形,最后求得直線的解析式,從而可求得m的值.
試題解析:(1)、∵經(jīng)過點(diǎn)A(0,﹣4)的拋物線y=x2+bx+c與x軸相交于點(diǎn)B(﹣1,0),
∴, ∴, ∴拋物線解析式為y=x2﹣x﹣4,
(2)、由(1)知,拋物線解析式為yx2﹣x﹣4=(x2﹣7x)﹣4=(x﹣)2﹣,
∴此拋物線向上平移個單位長度的拋物線的解析式為y=(x﹣)2﹣,
再向左平移m(m>0)個單位長度,得到新拋物線y=(x+m﹣)2﹣,
∴拋物線的頂點(diǎn)P(﹣m+,﹣), 對于拋物線y=x2﹣x﹣4,令y=0, x2﹣x﹣4=0,解得x=﹣1或8, ∴B(8,0),∵A(0,﹣4),B(﹣1,0),
∴直線AB的解析式為y=﹣4x﹣4,直線AC的解析式為y=x﹣4, 當(dāng)頂點(diǎn)P在AB上時,﹣ =﹣4×(﹣m+)﹣4,解得m=, 當(dāng)頂點(diǎn)P在AC上時,﹣ =(﹣m+)﹣4,
解得m=, ∴當(dāng)點(diǎn)P在△ABC內(nèi)時<m<.
(3)、翻折后所得新圖象如圖所示.
平移直線y=x+k知:直線位于l1和l2時,它與新圖象有三個不同的公共點(diǎn).
①當(dāng)直線位于l1時,此時l1過點(diǎn)B(﹣1,0), ∴0=﹣1+k,即k=1.
②∵當(dāng)直線位于l2時,此時l2與函數(shù)y=﹣x2+x+4(﹣1≤x≤8)的圖象有一個公共點(diǎn)
∴方程x+k=﹣x2+x+4,即x2﹣5x﹣8+2k=0有兩個相等實(shí)根. ∴△=25﹣4(2k﹣8)=0,即k=.
綜上所述,k的值為1或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子:①-1>2;②3x≥-1;③x-3;④s=vt;⑤3x-4<2y;⑥3x-5=2x+2;⑦a2+2≥0;⑧a2+b2≠c2.其中是不等式的是___________________.(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛45座的大客車上現(xiàn)在共有a人,到下一站后,下了3人,上了5人,此時車上仍未坐滿,則用不等關(guān)系可表示為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于A、B兩點(diǎn),動點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個單位長度的速度向點(diǎn)O運(yùn)動;同時,動點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個單位長度的速度向點(diǎn)A運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)P運(yùn)動的時間為t(秒).
(1)直接寫出A、B兩點(diǎn)的坐標(biāo).
(2)當(dāng)△APQ與△AOB相似時,求t的值.
(3)設(shè)△APQ的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巴中市某樓盤準(zhǔn)備以每平方米5000元的均價對外銷售,由于有關(guān)部門關(guān)于房地產(chǎn)的新政策出臺后,部分購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格經(jīng)過兩次下調(diào)后,決定以每平方米4050元的均價開盤銷售,若兩次下調(diào)的百分率相同,求平均每次下調(diào)的百分率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com