多邊形的每個(gè)內(nèi)角的度數(shù)都等于140°,則這個(gè)多邊形的邊數(shù)為(  )
A、8B、9C、10D、14
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)直三棱柱的表面展開圖,其中AD=10,CD=2,則下列可作為AB長的是(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為四邊形、平行四邊形、矩形、正方形菱形、梯形集合示意圖,請(qǐng)將字母所代表的圖形分別填入下表:
A B C D E F
 
 
 
 
 
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)多邊形的每個(gè)內(nèi)角均為140°,則這個(gè)多邊形是(  )
A、七邊形B、八邊形C、九邊形D、十邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一個(gè)多邊形的每一個(gè)外角都等于72°,則這個(gè)多邊形的邊數(shù)是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,∠B=50°,若沿圖中虛線剪去∠B,則∠1+∠2等于( 。
A、130°B、230°C、270°D、310°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)活動(dòng)-求重疊部分的面積

(1)問題情境:如圖①,將頂角為120°的等腰三角形紙片(紙片足夠大)的頂點(diǎn)P與等邊△ABC的內(nèi)心O重合,已知OA=2,則圖中重疊部分△PAB的面積為
 

(2)探究1:在(1)的條件下,將紙片繞P點(diǎn)旋轉(zhuǎn)至如圖②所示位置,紙片兩邊分別與AC,AB交于點(diǎn)E,F(xiàn),圖②中重疊部分的面積與圖①重疊部分的面積是否相等?如果相等,請(qǐng)給予證明;如果不相等,請(qǐng)說明理由.
(3)探究2:如圖③,若∠CAB=α(0°<α<90°),AD為∠CAB的角平分線,點(diǎn)P在射線AD上,且AP=2,以P為頂點(diǎn)的等腰三角形紙片(紙片足夠大)與∠CAB的兩邊AC,AB分別交于點(diǎn)E、F,∠EPF=180°-α,求重疊部分的面積.(用α或
α2
的三角函數(shù)值表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,等腰直角△ABC中,AB=AC,∠BAC=90°,將一塊三角板中含45°角的頂點(diǎn)放在A上,從AB邊開始繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.
(1)操作發(fā)現(xiàn):在線段BC上取一點(diǎn)M,連接AM,若AD平分∠BAM,則∠MAE與∠EAC的數(shù)量關(guān)系是
 

(2)猜想論證:當(dāng)0°<α<45°時(shí),線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2.小穎和小亮想出了兩種不同的方法進(jìn)行解決:
小穎的想法:將△ABD沿AD所在的直線對(duì)折得到△ADF,連接EF(如圖2);
小亮的想法:將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
請(qǐng)你從中任選一種方法進(jìn)行證明;
(3)拓展探究:繼續(xù)旋轉(zhuǎn)三角板,當(dāng)135°<α<180°時(shí)(如圖4),試探究線段BD、CE、DE之間的關(guān)系,請(qǐng)直接寫出寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

菱形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OC=
2
,點(diǎn)B的坐標(biāo)為( 。
A、(
2
+1
,1)
B、(1,
2
+1
C、(
2
,1)
D、(1,
2

查看答案和解析>>

同步練習(xí)冊(cè)答案