【題目】已知拋物線y=ax2+bx+2過點A(5,0)和點B(﹣3,﹣4),與y軸交于點C.

(1)求拋物線y=ax2+bx+2的函數(shù)表達式;

(2)求直線BC的函數(shù)表達式;

(3)點E是點B關(guān)于y軸的對稱點,連接AE、BE,點P是折線EB﹣BC上的一個動點,

當點P在線段BC上時,連接EP,若EPBC,請直接寫出線段BP與線段AE的關(guān)系;

過點P作x軸的垂線與過點C作的y軸的垂線交于點M,當點M不與點C重合時,點M關(guān)于直線PC的對稱點為點M′,如果點M′恰好在坐標軸上,請直接寫出此時點P的坐標.

【答案】(1)y=﹣x2+x+2;(2)y=2x+2;(3)①線段BP與線段AE的關(guān)系是相互垂直;點P的坐標為:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).

【解析】

(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;

(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b即可求解;

(3)AE直線的斜率kAE=2,而直線BC斜率的kAE=2即可求解;

②考慮當P點在線段BC上時和在線段BE上時兩種情況,利用PM′=PM即可求解.

(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,

解得:a=﹣,b=,

故函數(shù)的表達式為y=﹣x2+x+2;

(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b,

解得:k=2,b=2,

故:直線BC的函數(shù)表達式為y=2x+2,

(3)①E是點B關(guān)于y軸的對稱點,E坐標為(3,﹣4),

則AE直線的斜率kAE=2,而直線BC斜率的kAE=2,

∴AE∥BC,而EP⊥BC,∴BP⊥AE

而BP=AE,線段BP與線段AE的關(guān)系是相互垂直;

設(shè)點P的橫坐標為m,

當P點在線段BC上時,

P坐標為(m,2m+2),M坐標為(m,2),則PM=2m,

直線MM′⊥BC,∴kMM′=﹣,

直線MM′的方程為:y=﹣x+(2+m),

則M′坐標為(0,2+m)或(4+m,0),

由題意得:PM′=PM=2m,

PM′2=42+m2=(2m)2,此式不成立,

或PM′2=m2+(2m+2)2=(2m)2

解得:m=﹣4±2,

故點P的坐標為(﹣4±2,﹣8±4);

當P點在線段BE上時,

點P坐標為(m,﹣4),點M坐標為(m,2),

則PM=6,

直線MM′的方程不變,為y=﹣x+(2+m),

則M′坐標為(0,2+m)或(4+m,0),

PM′2=m2+(6+m)2=(2m)2,

解得:m=0,或﹣;

或PM′2=42+42=(6)2,無解;

故點P的坐標為(0,﹣4)或(﹣,﹣4);

綜上所述:

點P的坐標為:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由6個長為2,寬為1的小矩形組成的大矩形網(wǎng)格,小矩形的頂點稱為這個矩形網(wǎng)格的格點,由格點構(gòu)成的幾何圖形稱為格點圖形(如:連接2個格點,得到一條格點線段;連接3個格點,得到一個格點三角形;),請按要求作圖(標出所畫圖形的頂點字母).

1)畫出4種不同于示例的平行格點線段;

2)畫出4種不同的成軸對稱的格點三角形,并標出其對稱軸所在線段;

3)畫出1個格點正方形,并簡要證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合實踐課上,某小組同學將直角三角形紙片放到橫線紙上(所有橫線都平行,且相鄰兩條平行線的距離為1),使直角三角形紙片的頂點恰巧在橫線上,發(fā)現(xiàn)這樣能求出三角形的邊長.

1)如圖1,已知等腰直角三角形紙片ABC,ACB=90°,AC=BC,同學們通過構(gòu)造直角三角形的辦法求出三角形三邊的長,則AB=__________;

2)如圖2,已知直角三角形紙片DEFDEF=90°,EF=2DE,求出DF的長;

3)在(2)的條件下,若橫格紙上過點E的橫線與DF相交于點G,直接寫出EG的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點A作AEDC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.

(1)求證:∠BAF=∠CBE;

(2)若AD=5,AB=8,sinD=.求證:AF=BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是(  )

A.ABCD,ADBCB.OAOCOBOD

C.ADBC,ABCDD.ABCDADBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

(1)每千克核桃應降價多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩隊舉行了一年一度的賽龍舟比賽,兩隊在比賽的路程(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示,請你根據(jù)圖象判斷,下列說法正確的有(

①甲隊先到達終點;

②甲隊比乙隊多走200米路程;

③乙隊比甲隊少用分鐘;

④比賽中兩隊從出發(fā)到分鐘時間段,乙隊的速度比甲隊的速度快.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為(  )(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACBC,點DABC內(nèi)一點,若ACAD,∠CAD30°,連接BD,則∠ADB的度數(shù)為( 。

A.120°B.135°C.150°D.165°

查看答案和解析>>

同步練習冊答案