如圖,在△ABC中,AD⊥BC于D,∠B=30°,∠C=45°,CD=1,則AB=______.
∵AD⊥BC,∠C=45°,
∴△ACD是等腰直角三角形,
∴AD=CD=1,
∵AD⊥BC,∠B=30°,
∴AB=2AD=2×1=2.
故答案為:2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,如果∠A=45°,AB=12,那么BC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).
(1)某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.(如圖2)
問題.試在圖3的梯形中畫出至少五條黃金分割線,并說明理由.
(2)類似“黃金分割線”得“黃金分割面”定義:截面a將一個(gè)體積為V的圖形分成體積為V1、V2的兩個(gè)圖形,且
V1
V
=
V2
V1
,則稱直線a為該圖形的黃金分割面.
問題:如圖4,長(zhǎng)方體ABCD-EFGH中,T是線段AB上的黃金分割點(diǎn),證明經(jīng)過T點(diǎn)且平行于平面BCGF的截面QRST是長(zhǎng)方體的黃金分割面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將兩塊直角三角板的斜邊重合,E是兩直角三角形公共斜邊AC的中點(diǎn).D、B分別為直角頂點(diǎn),連接DE、BE、DB,∠DAC=60°,∠BAC=45°.則∠EDB的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠ACB=90°,∠A=60°,CD⊥AB于點(diǎn)D,若AD=4,則AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,斜邊AB上的中線CD=5cm,AC=6cm,則BC=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以第①個(gè)等腰直角三角形的斜邊長(zhǎng)作為第②個(gè)等腰直角三角形的腰,以第②個(gè)等腰直角三角形的斜邊長(zhǎng)做為第③個(gè)等腰直角三角形的腰,依此類推,若第⑨個(gè)等腰直角三角形的斜邊長(zhǎng)為16
3
厘米,則第①個(gè)等腰直角三角形的斜邊長(zhǎng)為______厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知三角形的三邊長(zhǎng)分別為
21
、5、2,則該三角形最長(zhǎng)邊上的中線長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,D是邊AC上的點(diǎn),AD=DB=2a,∠A=15°,則BC邊的長(zhǎng)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案