如圖,梯形ABCD中,AD∥BC,∠A=900, 點E為CD邊的中點,BE⊥CD,且∠FBE=2∠EBC.在線段AD上取一點F,在線段BE上取一點G,使得BF=BG,連接CG.

【小題1】若AB=AF,EG=,求線段CG的長;
【小題2】求證:∠EBC+∠ECG =30°
p;【答案】
【小題1】
【小題2】在Rt△EGC中,GC==2                  (5分)
(2)由(1)可知:△FBD≌△GBC可得∠FDB=∠DBC=2∠EBC
∵∠GBC+∠GCB=∠EGC  ∴∠EGC=∠GBC+2∠EBC=3∠GBC
∵∠EGC+∠ECB=90°  ∴  ∠GBC+∠ECB=30°  (10分)解析:
p; 【解析】
解:連接BD,
∵點E為CD邊的中點,BE⊥CD 
∴BD=BC
∴∠DBE=∠CBE    
∵∠FBE=2∠EBC∴∠DBE=∠CBE=∠DBF
∵ BF=BG  ∴△FBD≌△GBC
∴∠DFB=∠CGB
∵∠DFB+∠AFB=∠CGB +∠CGE=180°
∴∠AFB=∠CGE
∵AB=AF, ∠A=9
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點O,那么,圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習冊答案