【題目】如圖,將線段 AB 先向右平移 5 個單位,再將所得線段繞原點按順時針方向旋轉(zhuǎn) 90°,得到線段 AB ,則點 B 的對應(yīng)點 B′的坐標是(

A.-4 , 1B. 1, 2C.4 ,- 1D.1 ,- 2

【答案】D

【解析】

在平面直角坐標系內(nèi),把一個圖形各個點的橫坐標都加上(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個單位長度;

圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.常見的是旋轉(zhuǎn)特殊角度如:30°,45°,60°,90°,180°

將線段AB先向右平移5個單位,點B2,1),連接OB,順時針旋轉(zhuǎn)90°,則B'對應(yīng)坐標為(1,-2),

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某建設(shè)工程隊計劃每小時挖掘土石方方,現(xiàn)決定租用甲、乙兩種型號的挖掘機來完成這項工作,已知一臺甲型挖掘機與一臺乙型挖掘機每小時共挖土方,臺甲型挖掘機與臺乙型挖掘機恰好能完成每小時的挖掘量.

1)求甲、乙兩種型號的挖掘機每小時各挖土多少方?

2)若租用一臺甲型挖掘機每小時元,租用一臺乙型挖掘機每小時元,且每小時支付的總租金不超過元,又恰好完成每小時的挖掘量,請設(shè)計該工程隊的租用方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小花在一次放風(fēng)箏活動中某時段的示意圖,她在A處時的風(fēng)箏線(整個過程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小花身高1.5米,當(dāng)她從點A跑動9米到達點B處時,風(fēng)箏線與水平線構(gòu)成45°角,此時風(fēng)箏到達點E處,風(fēng)箏的水平移動距離CF10米,這一過程中風(fēng)箏線的長度保持不變,求風(fēng)箏原來的高度C1D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,的中點,于點延長線一點,且

求證: 的切線:

已知,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交x軸于點A,B(點A在點B的左側(cè)).

1)求點A,B的坐標,并根據(jù)該函數(shù)圖象寫出y0x的取值范圍;

2)把點B向上平移m個單位得點B1.若點B1向左平移n個單位,將與該二次函數(shù)圖象上的點B2重合;若點B1向左平移(n6)個單位,將與該二次函數(shù)圖象上的點B3重合.已知m0,n0,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.

1)求甲、乙兩人每天各加工多少個這種零件?

2)已知甲、乙兩人加工這種零件每天的加工費分別是 150 元和 120 元,現(xiàn)有 3000 個這種零件的加工任務(wù),甲單獨加工一段時間后另有安排,剩余任務(wù)由乙單獨完成.如果總加工費不超過 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)yx2+2kx+k1(k為常數(shù)),下列說法正確的個數(shù)是( )

(1)對任意實數(shù)k,函數(shù)與x軸有兩個交點

(2)當(dāng)x≥k時,函數(shù)y的值都隨x的增大而增大

(3)k取不同的值時,二次函數(shù)y的頂點始終在同一條拋物線上

(4)對任意實數(shù)k,拋物線yx2+2kx+k1都必定經(jīng)過唯一定點

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系xoy中,二次函數(shù)的圖象與x軸的交點為A,B,頂點為C,點D為點C關(guān)于x軸的對稱點,過點A作直線lBD于點E,連接BC的直線交直線lK.

1)問:在四邊形ABKD內(nèi)部是否存在點P,使它到四邊形ABKD四邊的距離都相等?

若存在,請求出點P的坐標;若不存在,請說明理由;

2)若M,N分別為直線AD和直線l上的兩個動點,連結(jié)DN,NM,MK,如圖2,求DN+NM+MK和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別過第二象限內(nèi)的點軸的平行線,與軸分別交于點與雙曲線分別交于點

下面四個結(jié)論:

存在無數(shù)個點使

存在無數(shù)個點使;

至少存在一個點使;

至少存在一個點使

所有正確結(jié)論的序號是________

查看答案和解析>>

同步練習(xí)冊答案