【題目】完成下列證明:

已知:AB//CD,連ADBC于點F,∠1=2,求證:∠B+CDE=180°

證明:∵∠1= ( )

又∵∠1=2

∴∠BFD=2( )

BC// ( )

∴∠C+ =180°( )

又∵AB//CD

∴∠B=C( )

∴∠B+CDE=180°

【答案】BFD(對頂角相等),等量代換),ED,(同位角相等,兩直線平行),CDE(兩直線平行,同旁內角互補),(兩直線平行,內錯角相等)

【解析】

首先利用對頂角相等得∠1=BFD,等量代換得∠2=BFD,再利用平行線的判定定理和性質得解答即可.

證明:∵∠1= BFD ( 對頂角相等 )

又∵∠1=2

∴∠BFD=2( 等量代換 )

BC// ED ( 同位角相等,兩直線平行 )

∴∠C+ CDE =180°( 兩直線平行,同旁內角互補 )

又∵AB//CD

∴∠B=C( 兩直線平行,內錯角相等 )

∴∠B+CDE=180°.

故答案為:∠BFD(對頂角相等),(等量代換),ED(同位角相等,兩直線平行),∠CDE,(兩直線平行,同旁內角互補),(兩直線平行,內錯角相等).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系XOY中的點A,給出如下定義:若存在點B(不與點A重合,且直線AB不與坐標軸平行或重合),過點A作直線m//x軸,過點B作直線n//y軸,直線m、n相交于點 C.當線段AC、BC的長度相等時,稱點B為點A的等距點,稱ABC的面積為點A的等距面積.

例如:如圖,點A(21),點B(5,4),因為AC=BC=3,所以點B為點A的等距點,此時點A的等距面積為.

(1)A的坐標是(01),在點B1(10),B2(2,3),B3(2,-2)中,點A的等距點為 ;

(2)A的坐標是(3,1),點A的等距點B在第三象限,且點A的等距面積等于,求此時點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近一個月來我市遭受暴雨襲擊,沱江水位上漲。小明以警戒水位為0點,用折線統(tǒng)計圖表示某一天江水水位情況,請你結合折線統(tǒng)計圖判斷下列敘述不正確的是(

A. 8時水位最高B. 8時到16時水位都在下降

C. 這一天水位均高于警戒水位D. P點表示12時水位高于警戒水位0.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某開發(fā)公司生產的 960 件新產品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產品,已知甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.

1)甲、乙兩個工廠每天各能加工多少件新產品?

2)公司制定產品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術指導,并負擔每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的頂點A、B的坐標分別是A(﹣1,0),B(0,﹣2),頂點C、D在雙曲線y= 上,邊AD交y軸于點E,且四邊形BCDE的面積是△ABE面積的5倍,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班為獎勵在小運動會上取得較好成績的運動員,花了400元錢購買甲、乙兩種獎品共30件,其中甲種獎品每件16元,乙種獎品每件12元,求甲乙兩種獎品各買多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接四邊形,AB為⊙O的直徑,連結BD.若∠BCD=120°,則∠ABD的大小為( )

A.60°
B.50°
C.40°
D.30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在長方形內,將兩張邊長分別為的正方形紙片按如圖,如圖兩種方式放置(如圖,如圖中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設如圖1中陰影部分的面積為,如圖2中陰影部分的面積為.時,的值為( )

A. 0B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雅安地震發(fā)生后,全國人民抗震救災,眾志成城,值地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運往災區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

400

500

600

(1)全部物資可用甲型車8輛,乙型車5輛,丙型車 來運送.

(2)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?

(3)為了節(jié)省運費,該地政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時的運費又是多少元?

查看答案和解析>>

同步練習冊答案