【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,有下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點(diǎn)E位置的改變而發(fā)生變化;
④點(diǎn)C到線段EF的最大距離為 .
其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】B
【解析】解:①連接CD;
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵AE=CF,
∴△ADE≌△CDF(SAS);
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.(故①正確);
②當(dāng)E、F分別為AC、BC中點(diǎn)時(shí),四邊形CDFE是正方形(故②錯(cuò)誤);
③如圖2所示,分別過點(diǎn)D,作DM⊥AC,DN⊥BC,于點(diǎn)M,N,
可以利用割補(bǔ)法可知四邊形CEDF的面積等于正方形CMDN面積,故面積保持不變(故③錯(cuò)誤);
④△DEF是等腰直角三角形, DE=EF,
當(dāng)EF∥AB時(shí),∵AE=CF,
∴E,F(xiàn)分別是AC,BC的中點(diǎn),故EF是△ABC的中位線,
∴EF取最小值 =2 ,∵CE=CF=2,∴此時(shí)點(diǎn)C到線段EF的最大距離為 EF= .(故④正確);
故正確的有2個(gè),
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)在實(shí)施居民用水額定管理前,對(duì)居民生活用水情況進(jìn)行了調(diào)查,下表是通過簡(jiǎn)單隨機(jī)抽樣獲得的50個(gè)家庭去年月平均用水量(單位:噸),并將調(diào)查數(shù)據(jù)進(jìn)行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
頻數(shù)分布表
分組 | 劃記 | 頻數(shù) |
2.0<x≤3.5 | 正正 | 11 |
3.5<x≤5.0 | 19 | |
5.0<x≤6.5 | ||
6.5<x≤8.0 | ||
8.0<x≤9.5 | 2 | |
合計(jì) | 50 |
(1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(2)從直方圖中你能得到什么信息?(寫出兩條即可);
(3)為了鼓勵(lì)節(jié)約用水,要確定一個(gè)用水量的標(biāo)準(zhǔn),超出這個(gè)標(biāo)準(zhǔn)的部分按1.5倍價(jià)格收費(fèi),若要使60%的家庭收費(fèi)不受影響,你覺得家庭月均用水量應(yīng)該定為多少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地新建的一個(gè)企業(yè),每月將生產(chǎn)1960噸污水,為保護(hù)環(huán)境,該企業(yè)計(jì)劃購(gòu)置污水處理器,并在如下兩個(gè)型號(hào)種選擇:
污水處理器型號(hào) | A型 | B型 |
處理污水能力(噸/月) | 240 | 180 |
已知商家售出的2臺(tái)A型、3臺(tái)B型污水處理器的總價(jià)為44萬元,售出的1臺(tái)A型、4臺(tái)B型污水處理器的總價(jià)為42萬元.
(1)求每臺(tái)A型、B型污水處理器的價(jià)格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購(gòu)買上述的污水處理器,那么他們至少要支付多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,3),把△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn)A,O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,O′,記旋轉(zhuǎn)角為α.
(1)如圖①,若α=90°,求AA′的長(zhǎng);
(2)如圖②,若α=120°,求點(diǎn)O′的坐標(biāo);
(3)在(Ⅱ)的條件下,邊OA上 的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+BP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo)(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖示的方格紙中,(1)畫出△ABC關(guān)于MN對(duì)稱的圖形△A1B1C1;
(2)說明△A2B2C2是由△A1B1C1經(jīng)過怎樣的平移得到的?
(3)在直線MN上找一點(diǎn)P,使得PB+PA最短.(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn):
如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b.
填空:當(dāng)點(diǎn)A位于 時(shí),線段AC的長(zhǎng)取得最大值,且最大值為 (用含a,b的式子表示)
(2)應(yīng)用:
點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請(qǐng)找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長(zhǎng)的最大值.
(3)拓展:
如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫出線段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具商店銷售功能相同的兩種品牌的計(jì)算器,購(gòu)買2個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122元;購(gòu)買1個(gè)A品牌和2個(gè)B品牌的計(jì)算器共需124元.
(1)求這兩種品牌計(jì)算器的單價(jià);
(2)學(xué)校開學(xué)前夕,該商店舉行促銷活動(dòng),具體辦法如下:購(gòu)買A品牌計(jì)算器按原價(jià)的九折銷售,購(gòu)買B品牌計(jì)算器超出10個(gè)以上超出的部分按原價(jià)的八折銷售,設(shè)購(gòu)買x個(gè)A品牌的計(jì)算器需要y1元,購(gòu)買x個(gè)B品牌的計(jì)算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)小明準(zhǔn)備聯(lián)系一部分同學(xué)集體購(gòu)買同一品牌的計(jì)算器,若購(gòu)買計(jì)算器的數(shù)量超過10個(gè),問購(gòu)買哪種品牌的計(jì)算器更合算?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=6,BC=8,D、E分別是斜邊AB和直角邊CB上的點(diǎn),把△ABC沿著直線DE折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是B′.
(1)如圖(1),如果點(diǎn)B′和頂點(diǎn)A重合,求CE的長(zhǎng);
(2)如圖(2),如果點(diǎn)B′和落在AC的中點(diǎn)上,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),△CDE是等邊三角形,連接EB、EA,延長(zhǎng)BE交邊AD點(diǎn)于點(diǎn)F.
(1)求證:△ADE≌△BCE;
(2)求∠AFB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com