【題目】如圖,在矩形ABCD中,過對角線AC的中點(diǎn)O作垂線EF交邊BC,AD分別為點(diǎn)E,F,連接AE,CF.

(1)求證:四邊形AECF是菱形;

(2)AD8AB4,求CF的長.

【答案】(1)證明見解析;(2)CF=5.

【解析】

1)根據(jù)平行四邊形性質(zhì)推出ADBC,根據(jù)平行線分線段成比例定理求出OE=OF,推出平行四邊形AFCE,根據(jù)菱形的判定推出即可;
2)由矩形的性質(zhì)得到∠B

為直角,由(1)得AECECF,設(shè)AE=x,BE8x,在直角三角形ABE中,利用勾股定理列出等式,求出x即可.

證明:

∵四邊形ABCD是矩形,

ADBC,∠AFO=∠CEO.

∵點(diǎn)OAC的中點(diǎn),

AOOC.

在△AFO和△CEO中,

,

∴△AFO≌△CEO(AAS),∴OEOF,

∴四邊形AECF是平行四邊形.

EFAC

∴平行四邊形AECF是菱形.

解:

∵四邊形ABCD是矩形,

∴∠B=90°.

(1)知四邊形AECF是菱形,

∴設(shè)AECECFx.BE8x.

RtABE中,AB2BE2AE2,即42(8x)2x2,

解得x5,

CF5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)長方體紙盒的平面展開圖,已知紙盒中相對兩個(gè)面上的數(shù)互為相反數(shù)

1填空:a=   b=   ,c=   ;

2先化簡,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)+4abc]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在△ABC中,∠A=30°,∠C=105°,AC=2 ,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克 元;

(2)求、與x的函數(shù)表達(dá)式;

(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,D,E,F(xiàn)為⊙O的六等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿OE弧EFFO的路線做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t,∠BPD的度數(shù)為y,則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵?)

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市中小學(xué)生“我的中國夢”讀書活動(dòng)中,某校對部分學(xué)生做了一次主題為“我最喜愛的圖書”的調(diào)查活動(dòng),將圖書分為甲、乙、丙、丁四類,學(xué)生可根據(jù)自己的愛好任選其中一類.學(xué)校根據(jù)調(diào)查情況進(jìn)行了統(tǒng)計(jì),并繪制了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請你結(jié)合圖中信息,解答下列問題:

(1)本次共調(diào)查了 名學(xué)生;

(2)被調(diào)查的學(xué)生中,最喜愛丁類圖書的有 人,最喜愛甲類圖書的人數(shù)占本次被調(diào)查人數(shù)的 %;

(3)在最喜愛丙類學(xué)生的圖書的學(xué)生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學(xué)校共有學(xué)生1500人,請你估計(jì)該校最喜愛丙類圖書的女生和男生分別有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,點(diǎn)D,E是邊BC上的兩點(diǎn),且AB=BE,AC=CD.

(1)若∠BAC =90°,求∠DAE的度數(shù);

(2)若∠BAC=120°,直接寫出∠DAE的度數(shù)

(3)設(shè)∠BAC=α,∠DAE=β,猜想α與β的之間數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. 當(dāng)ABBC時(shí),它是菱形 B. 當(dāng)ACBD時(shí),它是菱形

C. 當(dāng)∠ABC90°時(shí),它是矩形 D. 當(dāng)ACBD時(shí),它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,填空并填寫理由:

(1)因?yàn)?/span>∠1=∠2,所以ADBC__________

(2)因?yàn)?/span>A+∠ABC=180°,所以ADBC________

(3)因?yàn)?/span>_____________,所以C+∠ABC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))

(4)因?yàn)?/span>____________,所以∠3=∠C(兩直線平行,同位角相等)

查看答案和解析>>

同步練習(xí)冊答案