【題目】在平面直角坐標(biāo)系中,已知OA10cm,OB5cm,點(diǎn)P從點(diǎn)O開始沿OA邊向點(diǎn)A2cm/s的速度移動(dòng);點(diǎn)Q從點(diǎn)B開始沿BO邊向點(diǎn)O1cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),用ts)表示移動(dòng)的時(shí)間(0≤t≤5),

1)用含t的代數(shù)式表示:線段PO   cm;OQ   cm

2)當(dāng)t為何值時(shí),四邊形PABQ的面積為19cm2

3)當(dāng)POQAOB相似時(shí),求出t的值.

【答案】12t,(5t),(2)當(dāng)t23時(shí),四邊形PABQ的面積為19cm2.(3)當(dāng)t1時(shí),POQAOB相似.

【解析】

1)根據(jù)路程=速度×?xí)r間可求解;

2)由面積和差關(guān)系列出方程求解;

3)根據(jù)POQAOB相似分兩種情形列出方程即可解決問題.

解:(1OP2tcm,OQ=(5tcm

故答案為:2t,(5t),

2S四邊形PABQSABOSPQO,

∴19×10×5×2t×5t),

t23,

當(dāng)t23時(shí),四邊形PABQ的面積為19cm2

3∵△POQAOB相似,POQAOB90°,

①當(dāng),則,

t,

②當(dāng)時(shí),則,

t1,

當(dāng)t1時(shí),POQAOB相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于AB兩點(diǎn),點(diǎn)P在以為圓心,1為半徑的⊙C上,QAP的中點(diǎn),已知OQ長(zhǎng)的最小值為,則的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-20),連結(jié)OA,將線段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線段OB.

1)求點(diǎn)B的坐標(biāo);

2)求經(jīng)過AO、B三點(diǎn)的拋物線的解析式;

3)在(2)中拋物線的對(duì)稱軸上是否存在點(diǎn)C,使BOC的周長(zhǎng)最。咳舸嬖,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

4)如果點(diǎn)P是(2)中的拋物線上的動(dòng)點(diǎn),且在x軸的下方,那么PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及PAB的最大面積;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線頂點(diǎn)為,且該拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).我們規(guī)定:拋物線與軸圍成的封閉區(qū)域稱為區(qū)域(不包含邊界);橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為整點(diǎn).

1)求拋物線頂點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);

2)如果拋物線經(jīng)過.

①求的值;

②在①的條件下,直接寫出區(qū)域內(nèi)整點(diǎn)的個(gè)數(shù).

3)如果拋物線區(qū)域內(nèi)有4個(gè)整點(diǎn),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,EFAC,垂足為點(diǎn)H,分別交AD、ABCB的延長(zhǎng)線交于點(diǎn)E、MF,且AEFB12,則AHAC的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年10月23日,港珠澳大橋正式開通,成為橫亙?cè)诹尕暄笊系囊坏漓n麗的風(fēng)景.大橋主體工程隧道的東、西兩端各設(shè)置了一個(gè)海中人工島,來銜接橋梁和海底隧道,西人工島上的A點(diǎn)和東人工島上的B點(diǎn)間的距離約為5.6千米,點(diǎn)C是與西人工島相連的大橋上的一點(diǎn),AB,C在一條直線上.如圖一艘觀光船沿與大橋段垂直的方向航行,到達(dá)P點(diǎn)時(shí)觀測(cè)兩個(gè)人工島,分別測(cè)得與觀光船航向的夾角∠DPA=18°,∠DPB=53°,求此時(shí)觀光船到大橋AC段的距離的長(zhǎng)

參考數(shù)據(jù):°°,°,°,°,°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長(zhǎng)線于E,且EDB=C.

(1)求證:ADEDBE;

(2)若DE=9cm,AE=12cm,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,已知C90°B50°,點(diǎn)D在邊BC上,BD2CD(圖4).把ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m0m180)度后,如果點(diǎn)B恰好落在初始RtABC的邊上,那么m_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6BC4,動(dòng)點(diǎn)Q在邊AB上,連接CQ,將BQC沿CQ所在的直線對(duì)折得到CQN,延長(zhǎng)QN交直線CD于點(diǎn)M

1)求證:MCMQ

2)當(dāng)BQ1時(shí),求DM的長(zhǎng);

3)過點(diǎn)DDECQ,垂足為點(diǎn)E,直線QN與直線DE交于點(diǎn)F,且,求BQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案