【題目】問(wèn)題背景:如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,交于點(diǎn),可推出結(jié)論:

問(wèn)題解決:如圖,在中,,,.點(diǎn)內(nèi)一點(diǎn),則點(diǎn)三個(gè)頂點(diǎn)的距離和的最小值是___________

【答案】

【解析】

如圖,將△MOG繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,得到△MPQ,易知△MOP為等邊三角形,繼而得到點(diǎn)O到三頂點(diǎn)的距離為:ONOMOGONOPPQ,由此可以發(fā)現(xiàn)當(dāng)點(diǎn)N、O、P、Q在同一條直線(xiàn)上時(shí),有ONOMOG最小,此時(shí),∠NMQ75°+60°=135°,過(guò)QQANMNM的延長(zhǎng)線(xiàn)于A,利用勾股定理進(jìn)行求解即可得.

如圖,將△MOG繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,得到△MPQ,

顯然△MOP為等邊三角形,

∴,OMOGOPPQ

∴點(diǎn)O到三頂點(diǎn)的距離為:ONOMOGONOPPQ,

∴當(dāng)點(diǎn)N、O、P、Q在同一條直線(xiàn)上時(shí),有ONOMOG最小,

此時(shí),∠NMQ75°+60°=135°,

過(guò)QQANMNM的延長(zhǎng)線(xiàn)于A,則∠MAQ=90°,

∴∠AMQ180°-NMQ=45°,

∵M(jìn)QMG4,

AQAMMQcos45°=4

NQ,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門(mén)抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:

1)樣本中的總?cè)藬?shù)為 ,開(kāi)私家車(chē)的人數(shù) ,扇形統(tǒng)計(jì)圖中“騎自行車(chē)”所在扇形的圓心角為 度;(直接寫(xiě)出答案)

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該單位共有500人,積極踐行這種生活方式,越來(lái)越多的人上下班由開(kāi)私家車(chē)改為騎自行車(chē).若步行、坐公交車(chē)上下班的人數(shù)保持不變,問(wèn)原來(lái)開(kāi)私家車(chē)的人中至少有多少人改為騎自行車(chē),才能使騎自行車(chē)的人數(shù)不低于開(kāi)私家車(chē)的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC 中,AB=AC BAC 60°,將線(xiàn)段 AB 繞點(diǎn) A逆時(shí)針旋轉(zhuǎn) 60°得到點(diǎn) D, 點(diǎn) E 與點(diǎn) D 關(guān)于直線(xiàn) BC 對(duì)稱(chēng),連接 CD,CE,DE

1)依題意補(bǔ)全圖形;

2)判斷△CDE 的形狀,并證明;

3)請(qǐng)問(wèn)在直線(xiàn)CE上是否存在點(diǎn) P,使得 PA - PB =CD 成立?若存在,請(qǐng)用文字描述出點(diǎn) P 的準(zhǔn)確位置,并畫(huà)圖證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)所在年級(jí)的500名學(xué)生參加志愿者活動(dòng),現(xiàn)有以下5個(gè)志愿服務(wù)項(xiàng)目:A,紀(jì)念館志講解員.B.書(shū)香社區(qū)圖書(shū)整理C.學(xué)編中國(guó)結(jié)及義賣(mài).D,家風(fēng)講解員E.校內(nèi)志愿服務(wù),要求:每位學(xué)生都從中選擇一個(gè)項(xiàng)目參加,為了了解同學(xué)們選擇這個(gè)5個(gè)項(xiàng)目的情況,該同學(xué)隨機(jī)對(duì)年級(jí)中的40名同學(xué)選擇的志愿服務(wù)項(xiàng)目進(jìn)行了調(diào)查,過(guò)程如下:

收集數(shù)據(jù):設(shè)計(jì)調(diào)查問(wèn)卷,收集到如下數(shù)據(jù)(志愿服務(wù)項(xiàng)目的編號(hào),用字母代號(hào)表示)

B,E,B,A,E,C,CC,B,B,

AC,E,DB,AB,E,CA,

DD,B,B,C,CA,E,B

C,B,DC,A,CC,A,C,E

1)整理、描述詩(shī)句:劃記、整理、描述樣本數(shù)據(jù),繪制統(tǒng)計(jì)圖如下,請(qǐng)補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖

選擇各志愿服務(wù)項(xiàng)目的人數(shù)統(tǒng)計(jì)表

志愿服務(wù)項(xiàng)目

劃記

人數(shù)

A.紀(jì)念館志愿講解員

8

B.書(shū)香社區(qū)圖書(shū)整理

C.學(xué)編中國(guó)結(jié)及義賣(mài)

正正

12

D.家風(fēng)講解員

E.校內(nèi)志愿服務(wù)

6

合計(jì)

40

40

分析數(shù)據(jù)、推斷結(jié)論

2)抽樣的40個(gè)樣本數(shù)據(jù)(志愿服務(wù)項(xiàng)目的編號(hào))的眾數(shù)是   (填AE的字母代號(hào))

3)請(qǐng)你任選AE中的兩個(gè)志愿服務(wù)項(xiàng)目,根據(jù)該同學(xué)的樣本數(shù)據(jù)估計(jì)全年級(jí)大約有多少名同學(xué)選擇這兩個(gè)志愿服務(wù)項(xiàng)目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是雙曲線(xiàn)圖象上的兩點(diǎn),連接,線(xiàn)段經(jīng)過(guò)點(diǎn),點(diǎn)為雙曲線(xiàn)在第二象限的分支上一點(diǎn),當(dāng)滿(mǎn)足時(shí),的值為( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)

1)如何將拋物線(xiàn)平移得到拋物線(xiàn)?

2)如圖1,拋物線(xiàn)軸正半軸交于點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn),交拋物線(xiàn)于另一點(diǎn).請(qǐng)你在線(xiàn)段上取點(diǎn),過(guò)點(diǎn)作直線(xiàn)軸交拋物線(xiàn)于點(diǎn),連接

①若,求點(diǎn)的橫坐標(biāo)

②若,直接寫(xiě)出點(diǎn)的橫坐標(biāo)

3)如圖2的頂點(diǎn)、在拋物線(xiàn)上,點(diǎn)在點(diǎn)右邊,兩條直線(xiàn)、與拋物線(xiàn)均有唯一公共點(diǎn),、均與軸不平行.若的面積為2,設(shè)、兩點(diǎn)的橫坐標(biāo)分別為,求的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按要求作圖,不要求寫(xiě)作法,但要保留作圖痕跡.

1)如圖1,矩形ABCD的頂點(diǎn)A、D在圓上, B、C兩點(diǎn)在圓內(nèi),已知圓心O,請(qǐng)僅用無(wú)刻度的直尺作圖,請(qǐng)作出直線(xiàn)lAD;

2)請(qǐng)僅用無(wú)刻度的直尺在下列圖2和圖3中按要求作圖.(補(bǔ)上所作圖形頂點(diǎn)字母)

①圖2是矩形ABCD,E,F分別是ABAD的中點(diǎn),以EF為邊作一個(gè)菱形;

②圖3是矩形ABCD,E是對(duì)角線(xiàn)BD上任意一點(diǎn)(BEDE),以AE為邊作一個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若用“*”表示一種運(yùn)算規(guī)則,我們規(guī)定:a*baba+b,如:3*23×23+25.以下說(shuō)法中錯(cuò)誤的是(  )

A. 不等式(﹣2*3x)<2的解集是x3

B. 函數(shù)y=(x+2*x的圖象與x軸有兩個(gè)交點(diǎn)

C. 在實(shí)數(shù)范圍內(nèi),無(wú)論a取何值,代數(shù)式a*a+1)的值總為正數(shù)

D. 方程(x2*35的解是x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90°,,點(diǎn)D、E分別在邊AB上,且AD = 2,∠DCE = 45°,那么DE =___________

查看答案和解析>>

同步練習(xí)冊(cè)答案