【題目】問(wèn)題背景:如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,與交于點(diǎn),可推出結(jié)論:
問(wèn)題解決:如圖,在中,,,.點(diǎn)是內(nèi)一點(diǎn),則點(diǎn)到三個(gè)頂點(diǎn)的距離和的最小值是___________
【答案】
【解析】
如圖,將△MOG繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,得到△MPQ,易知△MOP為等邊三角形,繼而得到點(diǎn)O到三頂點(diǎn)的距離為:ON+OM+OG=ON+OP+PQ,由此可以發(fā)現(xiàn)當(dāng)點(diǎn)N、O、P、Q在同一條直線(xiàn)上時(shí),有ON+OM+OG最小,此時(shí),∠NMQ=75°+60°=135°,過(guò)Q作QA⊥NM交NM的延長(zhǎng)線(xiàn)于A,利用勾股定理進(jìn)行求解即可得.
如圖,將△MOG繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,得到△MPQ,
顯然△MOP為等邊三角形,
∴,OM+OG=OP+PQ,
∴點(diǎn)O到三頂點(diǎn)的距離為:ON+OM+OG=ON+OP+PQ,
∴當(dāng)點(diǎn)N、O、P、Q在同一條直線(xiàn)上時(shí),有ON+OM+OG最小,
此時(shí),∠NMQ=75°+60°=135°,
過(guò)Q作QA⊥NM交NM的延長(zhǎng)線(xiàn)于A,則∠MAQ=90°,
∴∠AMQ=180°-∠NMQ=45°,
∵M(jìn)Q=MG=4,
∴AQ=AM=MQcos45°=4,
∴NQ=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門(mén)抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:
(1)樣本中的總?cè)藬?shù)為 ,開(kāi)私家車(chē)的人數(shù) ,扇形統(tǒng)計(jì)圖中“騎自行車(chē)”所在扇形的圓心角為 度;(直接寫(xiě)出答案)
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該單位共有500人,積極踐行這種生活方式,越來(lái)越多的人上下班由開(kāi)私家車(chē)改為騎自行車(chē).若步行、坐公交車(chē)上下班的人數(shù)保持不變,問(wèn)原來(lái)開(kāi)私家車(chē)的人中至少有多少人改為騎自行車(chē),才能使騎自行車(chē)的人數(shù)不低于開(kāi)私家車(chē)的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,AB=AC, ∠BAC <60°,將線(xiàn)段 AB 繞點(diǎn) A逆時(shí)針旋轉(zhuǎn) 60°得到點(diǎn) D, 點(diǎn) E 與點(diǎn) D 關(guān)于直線(xiàn) BC 對(duì)稱(chēng),連接 CD,CE,DE.
(1)依題意補(bǔ)全圖形;
(2)判斷△CDE 的形狀,并證明;
(3)請(qǐng)問(wèn)在直線(xiàn)CE上是否存在點(diǎn) P,使得 PA - PB =CD 成立?若存在,請(qǐng)用文字描述出點(diǎn) P 的準(zhǔn)確位置,并畫(huà)圖證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)所在年級(jí)的500名學(xué)生參加志愿者活動(dòng),現(xiàn)有以下5個(gè)志愿服務(wù)項(xiàng)目:A,紀(jì)念館志講解員.B.書(shū)香社區(qū)圖書(shū)整理C.學(xué)編中國(guó)結(jié)及義賣(mài).D,家風(fēng)講解員E.校內(nèi)志愿服務(wù),要求:每位學(xué)生都從中選擇一個(gè)項(xiàng)目參加,為了了解同學(xué)們選擇這個(gè)5個(gè)項(xiàng)目的情況,該同學(xué)隨機(jī)對(duì)年級(jí)中的40名同學(xué)選擇的志愿服務(wù)項(xiàng)目進(jìn)行了調(diào)查,過(guò)程如下:
收集數(shù)據(jù):設(shè)計(jì)調(diào)查問(wèn)卷,收集到如下數(shù)據(jù)(志愿服務(wù)項(xiàng)目的編號(hào),用字母代號(hào)表示)
B,E,B,A,E,C,C,C,B,B,
A,C,E,D,B,A,B,E,C,A,
D,D,B,B,C,C,A,E,B
C,B,D,C,A,C,C,A,C,E,
(1)整理、描述詩(shī)句:劃記、整理、描述樣本數(shù)據(jù),繪制統(tǒng)計(jì)圖如下,請(qǐng)補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖
選擇各志愿服務(wù)項(xiàng)目的人數(shù)統(tǒng)計(jì)表
志愿服務(wù)項(xiàng)目 | 劃記 | 人數(shù) |
A.紀(jì)念館志愿講解員 | 正 | 8 |
B.書(shū)香社區(qū)圖書(shū)整理 | ||
C.學(xué)編中國(guó)結(jié)及義賣(mài) | 正正 | 12 |
D.家風(fēng)講解員 | ||
E.校內(nèi)志愿服務(wù) | 正 一 | 6 |
合計(jì) | 40 | 40 |
分析數(shù)據(jù)、推斷結(jié)論
(2)抽樣的40個(gè)樣本數(shù)據(jù)(志愿服務(wù)項(xiàng)目的編號(hào))的眾數(shù)是 (填A﹣E的字母代號(hào))
(3)請(qǐng)你任選A﹣E中的兩個(gè)志愿服務(wù)項(xiàng)目,根據(jù)該同學(xué)的樣本數(shù)據(jù)估計(jì)全年級(jí)大約有多少名同學(xué)選擇這兩個(gè)志愿服務(wù)項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn),是雙曲線(xiàn)圖象上的兩點(diǎn),連接,線(xiàn)段經(jīng)過(guò)點(diǎn),點(diǎn)為雙曲線(xiàn)在第二象限的分支上一點(diǎn),當(dāng)滿(mǎn)足且時(shí),的值為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)和
(1)如何將拋物線(xiàn)平移得到拋物線(xiàn)?
(2)如圖1,拋物線(xiàn)與軸正半軸交于點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn),交拋物線(xiàn)于另一點(diǎn).請(qǐng)你在線(xiàn)段上取點(diǎn),過(guò)點(diǎn)作直線(xiàn)軸交拋物線(xiàn)于點(diǎn),連接
①若,求點(diǎn)的橫坐標(biāo)
②若,直接寫(xiě)出點(diǎn)的橫坐標(biāo)
(3)如圖2,的頂點(diǎn)、在拋物線(xiàn)上,點(diǎn)在點(diǎn)右邊,兩條直線(xiàn)、與拋物線(xiàn)均有唯一公共點(diǎn),、均與軸不平行.若的面積為2,設(shè)、兩點(diǎn)的橫坐標(biāo)分別為、,求與的數(shù)量關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求作圖,不要求寫(xiě)作法,但要保留作圖痕跡.
(1)如圖1,矩形ABCD的頂點(diǎn)A、D在圓上, B、C兩點(diǎn)在圓內(nèi),已知圓心O,請(qǐng)僅用無(wú)刻度的直尺作圖,請(qǐng)作出直線(xiàn)l⊥AD;
(2)請(qǐng)僅用無(wú)刻度的直尺在下列圖2和圖3中按要求作圖.(補(bǔ)上所作圖形頂點(diǎn)字母)
①圖2是矩形ABCD,E,F分別是AB和AD的中點(diǎn),以EF為邊作一個(gè)菱形;
②圖3是矩形ABCD,E是對(duì)角線(xiàn)BD上任意一點(diǎn)(BE>DE),以AE為邊作一個(gè)平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若用“*”表示一種運(yùn)算規(guī)則,我們規(guī)定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下說(shuō)法中錯(cuò)誤的是( )
A. 不等式(﹣2)*(3﹣x)<2的解集是x<3
B. 函數(shù)y=(x+2)*x的圖象與x軸有兩個(gè)交點(diǎn)
C. 在實(shí)數(shù)范圍內(nèi),無(wú)論a取何值,代數(shù)式a*(a+1)的值總為正數(shù)
D. 方程(x﹣2)*3=5的解是x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,,點(diǎn)D、E分別在邊AB上,且AD = 2,∠DCE = 45°,那么DE =___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com