【題目】如圖,直線y=﹣x+4與坐標軸分別交于點A、B,與直線yx交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Qx軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).

1)求點P運動的速度是多少?

2)當t為多少秒時,矩形PEFQ為正方形?

【答案】1)點P運動的速度是每秒2個單位長度;(2t24;

【解析】

1)先求得AB兩點坐標,得到的值,再根據(jù)相似三角形對應邊成比例得到APEP的比值,進而得到點P的速度;

2)分QP兩點相遇前后兩種情況進行討論,當PQPE時,矩形PEFQ為正方形,由用關于t的式子表示各線段的長,然后求出t的值即可.

解:(1直線y=﹣x+4與坐標軸分別交于點AB,

x0時,y4,y0時,x8,

,

t秒時,QOFQt,則EPt,

EPBO,

AP2t,

動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,

P運動的速度是每秒2個單位長度;

2)如圖,當PQPE時,矩形PEFQ為正方形,

OQFQt,PA2t,

QP8t2t83t,

∴83tt,

解得:t2

如圖2,當PQPE時,矩形PEFQ為正方形,

OQt,PA2t,

OP82t

QPt﹣(82t)=3t8,

t3t8

解得:t4;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程x2m1x+m+2=0

1若方程有兩個相等的實數(shù)根,求m的值;

2RtABC中,C=90°,tanA的值恰為1中方程的根,求cosB的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BDCF相交于點H.給出下列結論,其中正確結論的個數(shù)是(

①△BDE∽△DPE;②;③;④tanDBE=.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(教材呈現(xiàn))下圖是華師版九年級上冊數(shù)學教材第78頁的部分內容.

1 求證:三角形的一條中位線與第三邊上的中線互相平分.

已知:如圖,在中,,.

求證:互相平分.

證明:連結、.

請根據(jù)教材提示,結合圖①,寫出完整的解題過程.

(結論應用)如圖②,連結圖①的、,分別與、、交于點、.

1)若,求點之間的距離.

2)若四邊形的面積為2,則的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,,下列結論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點AB的坐標分別為(4,0)、(02),點C為線段AB上任意一點(不與點A、B重合).CDOA于點D,點EDC的延長線上,EFy軸于點F,若點CDE中點,則四邊形ODEF的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,對角線ACBD相交于點O,再添加一個條件,仍不能判定四邊形ABCD是矩形的是 ( 。

A.ABADB.OAOBC.ACBDD.DCBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.

(1)求拋物線的解析式;

(2)當點P在直線OD下方時,求面積的最大值.

(3)直線OQ與線段BC相交于點E,當相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學德育處組織了一次全校2000名學生參加的漢字聽寫大賽.為了解本次大賽的成績,學校德育處隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:

成績x(分)分數(shù)段

頻數(shù)(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

頻數(shù)分布直方圖

根據(jù)所給的信息,回答下列問題:

1m=________;n=________

2)補全頻數(shù)分布直方圖;

3)這200名學生成績的中位數(shù)會落在________分數(shù)段;

4)若成績在90分以上(包括90分)為優(yōu)等,請你估計該校參加本次比賽的2000名學生中成績是優(yōu)等的約有多少人?

查看答案和解析>>

同步練習冊答案