【題目】如圖,矩形ABCD中,AB2,將矩形ABCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A、C分別落在點(diǎn)AC處,如果點(diǎn)AC、B在同一條直線上,則∠CBA的正切值為___

【答案】

【解析】

如圖,連接BA、C,由題意可知∠CBA=∠ACD,可設(shè)ADx,則可知ADxAC2x,在RtCBARtACD中,利用正切函數(shù)的定義可得關(guān)于x的方程,可求得x的值,再由正切函數(shù)的定義可求得答案.

∵四邊形ABCD為矩形,

ABCD2,

由旋轉(zhuǎn)的性質(zhì)可得ADA'D,CDAB2,

設(shè)ADx,則ADxAC2x,

A、CB在同一條直線上,且ABCD,

∴∠CBA=∠DCA,

tanCBAtanDCA,

解得x=﹣1+x=﹣1(小于0,不合題意,舍去),

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在信息技術(shù)飛速發(fā)展的今天,智能手機(jī)的使用呈現(xiàn)出低齡化的趨勢,中小學(xué)生使用智能手機(jī)成為十分普遍的現(xiàn)象,但智能手機(jī)給生活帶來便利的同時(shí),也對(duì)中小學(xué)生的身心發(fā)展帶來一些不利影響,比如手機(jī)屏幕對(duì)視力的傷害、關(guān)注各種“垃圾新聞”對(duì)時(shí)間的浪費(fèi)、沉迷手機(jī)游戲缺少運(yùn)動(dòng)、人際交往等等,這些現(xiàn)象引起了家長、學(xué)校、社會(huì)的廣泛關(guān)注.對(duì)此,成都某中學(xué)學(xué)生會(huì)發(fā)出了“中小學(xué)生使用非智能手機(jī)”的倡議,鼓勵(lì)同學(xué)們?nèi)姘l(fā)展,追逐夢(mèng)想,把更多時(shí)間用在將來能夠成就自我的地方.據(jù)統(tǒng)計(jì),今年9月該中學(xué)使用非智能手機(jī)的同學(xué)有128人,倡議發(fā)出后,11月使用非智能手機(jī)的同學(xué)上升到了200人.

1)若從9月到11月使用非智能手機(jī)的同學(xué)平均增長率相同,那么按此增長率增長到12月份該校使用非智能手機(jī)的同學(xué)將有多少人?

2)某于機(jī)制造商發(fā)現(xiàn)當(dāng)下市場上售賣的非智能手機(jī)大多品質(zhì)不佳、外觀設(shè)計(jì)成就,難以滿足市場的需要,所以該廠決定投入12萬元全部用于生產(chǎn)型、型兩款精美的“學(xué)生專用手機(jī)”投入市場,一部型手機(jī)生產(chǎn)成本為400元,售價(jià)為600元;一部型手機(jī)生產(chǎn)成本為600元,售價(jià)為930元,該廠計(jì)劃生產(chǎn)型手機(jī)的數(shù)量不少于型手機(jī)數(shù)量的2倍,但不超過型手機(jī)數(shù)量的2.3倍,求生產(chǎn)這批手機(jī)并全部售賣后可獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小王在長江邊某瞭望臺(tái)D處測得江面上的漁船A的俯角為40°,若DE3米,CE2米,CE平行于江面AB,迎水坡BC的坡度i10.75,坡長BC10米,則此時(shí)AB的長約為多少米?(結(jié)果精確到0.1,參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77tan40°≈0.84

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD為邊BC上的中線,且AD平分∠BAC.嘉淇同學(xué)先是以A為圓心,任意長為半徑畫弧,交AD于點(diǎn)P,交AC于點(diǎn)Q,然后以點(diǎn)C為圓心,AP長為半徑畫弧,交AC于點(diǎn)M,再以M為圓心,PQ長為半徑畫弧,交前弧于點(diǎn)N,作射線CN,交BA的延長線于點(diǎn)E

1)通過嘉淇的作圖方法判斷ADCE的位置關(guān)系是  ,數(shù)量關(guān)系是  ;

2)求證:ABAC;

3)若BC24,CE10,求△ABC的內(nèi)心到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC

1)尺規(guī)作圖作ABC的外接圓(保留作圖痕跡,不寫作法);

2)設(shè)ABC是等腰三角形,底邊,腰,求圓的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(9,6),ABy軸,垂足為B,點(diǎn)P從原點(diǎn)O出發(fā)向x軸正方向運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),若點(diǎn)P與點(diǎn)Q的速度之比為1:2,則下列說法正確的是( 。

A. 線段PQ始終經(jīng)過點(diǎn)(2,3)

B. 線段PQ始終經(jīng)過點(diǎn)(3,2)

C. 線段PQ始終經(jīng)過點(diǎn)(2,2)

D. 線段PQ不可能始終經(jīng)過某一定點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過O、A、B三點(diǎn),A(4,0)B(1,-3),P為拋物線上一點(diǎn),過點(diǎn)P的直線y=x+m與對(duì)稱軸交于點(diǎn)Q.

(1)直線PQ與x軸所夾銳角的度數(shù),并求出拋物線的解析式.

(2)當(dāng)點(diǎn)P在x軸下方的拋物線上時(shí),過點(diǎn)C(2,2)的直線AC與直線PQ交于點(diǎn)D,求: PD+DQ的最大值;②PD.DQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB6,BC6,∠D30°,點(diǎn)EAB邊的中點(diǎn),點(diǎn)FBC邊上一動(dòng)點(diǎn),將△BEF移沿直線EF折疊,得到△GEF,當(dāng)FGAC時(shí),BF的長為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案