【題目】如圖,在平面直角坐標(biāo)系中,直線yx+2x軸交于點(diǎn)A,與y軸交于點(diǎn)C,與反比例函數(shù)y在第一象限內(nèi)的圖象交于點(diǎn)B1,3),連接BO,下面三個(gè)結(jié)論:①SAOB1.5;點(diǎn)(x1,y1)和點(diǎn)(x2y2)在反比例函數(shù)的圖象上,若x1x2,則y1y2不等式x+2的解集是0x1.其中正確的有( 。

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

【答案】A

【解析】

①將y=0代入y=x+2中求出x值,由此即可得出OA的長(zhǎng)度,結(jié)合點(diǎn)B的縱坐標(biāo)結(jié)合三角形的面積即可求出SAOB=3,結(jié)論①不正確;②當(dāng)x10x2時(shí),可得出y10y2,結(jié)論②不正確;③聯(lián)立兩函數(shù)解析式成方程組,解方程組可得出兩函數(shù)圖象的交點(diǎn)坐標(biāo),根據(jù)兩函數(shù)圖象的上下位置關(guān)系結(jié)合圖形即可得出不等式x+2的解集是x-30x1,結(jié)論③不正確.綜上即可得出結(jié)論.

①當(dāng)yx+20時(shí),x=﹣2,

∴點(diǎn)A(﹣2,0),

OA2,

SAOBOA|yB| ×2×33,結(jié)論①不正確;

②當(dāng)x10x2時(shí),y10y2,結(jié)論②不正確;

③聯(lián)立兩函數(shù)解析式成方程組,

,解得:,,

觀察函數(shù)圖象可知:當(dāng)x<﹣30x1時(shí),直線yx+2在反比例函數(shù)y圖象的下方,

∴不等式x+2的解集是x<﹣30x1,結(jié)論③不正確.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).

梅涅勞斯(Menelaus)是公元一世紀(jì)時(shí)的希臘數(shù)學(xué)家兼天文學(xué)家,著有幾何學(xué)和三角學(xué)方面的許多書籍.梅涅勞斯發(fā)現(xiàn),三角形各邊(或其延長(zhǎng)線)被一條不過(guò)任何一個(gè)頂點(diǎn)也不與任何一條邊平行的直線所截,這條直線可能與三角形的兩條邊相交(一定還會(huì)與一條邊的延長(zhǎng)線相交),也可能與三條邊都不相交(與三條邊的延長(zhǎng)線都相交).他進(jìn)行了深入研究并證明了著名的梅涅勞斯定理(簡(jiǎn)稱梅氏定理):

設(shè)D,EF依次是△ABC的三邊AB,BCCA或其延長(zhǎng)線上的點(diǎn),且這三點(diǎn)共線,則滿足

這個(gè)定理的證明步驟如下:

情況:如圖1,直線DE交△ABC的邊AB于點(diǎn)D,交邊AC于點(diǎn)F,交邊BC的延長(zhǎng)線與點(diǎn)E

過(guò)點(diǎn)CCMDEAB于點(diǎn)M,則,(依據(jù)),

,

BEADFCBDAFEC,即

情況:如圖2,直線DE分別交△ABC的邊BA,BC,CA的延長(zhǎng)線于點(diǎn)D,E,F

1)情況中的依據(jù)指:   ;

2)請(qǐng)你根據(jù)情況的證明思路完成情況的證明;

3)如圖3,D,F分別是△ABC的邊AB,AC上的點(diǎn),且AD:DBCF:FA2:3,連接DF并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)E,那么BE:CE   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形 ABCD 中,E 為邊 BC 上一點(diǎn),F 為邊 CD 上一點(diǎn),且∠AEF=90°

1)如圖 1,若 ABCD 為正方形,E BC 中點(diǎn),求證:

2)若 ABCD 為平行四邊形,∠AFE=ADC,

①如圖 2,若∠AFE=60°,求的值;

②如圖 3,若 AB=BCEC=2CF.直接寫出 cosAFE 值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線yx+4與拋物線y=﹣x2+bx+cb,c是常數(shù))交于AB兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)By軸上.設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)C

1)求該拋物線的解析式;

2P是拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),

①如圖2,若點(diǎn)P在直線AB上方,連接OPAB于點(diǎn)D,求的最大值;

②如圖3,若點(diǎn)Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)EF恰好落在y軸上,直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC中,∠ACB90°,EAB上一點(diǎn),以AE為直徑作OBC相切于點(diǎn)D,連接ED并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)F

1)求證:AEAF;

2)若BC4,AC3,求O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提倡節(jié)約用電,某地區(qū)規(guī)定每月用電量不超過(guò) a 千瓦·時(shí),居民生活用電基本價(jià)格為每千瓦時(shí) 0.5 元;若每月用電量超過(guò) a 千瓦·時(shí),則超過(guò)部分按基本電價(jià)提高 20%收費(fèi).居住此地的老李家二月份用電 120 千瓦·時(shí),所交的電費(fèi)為 66 元.

1)求 a 的值;

2)老李登錄當(dāng)?shù)貒?guó)家電網(wǎng)網(wǎng)絡(luò)平臺(tái)繳費(fèi)后彈出一個(gè)對(duì)話框:您的家庭一月份和二月份的平均電費(fèi)不超過(guò)0.54 /千瓦·時(shí),評(píng)為節(jié)能小家庭.試計(jì)算老李家一月份的用電量的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小島在港口的南偏西45°方向,距離港口81海里處.甲船從出發(fā),沿方向以6海里/時(shí)的速度駛向港口,乙船從港口出發(fā),沿南偏東60°方向,以15海里/時(shí)的速度駛離港口.現(xiàn)兩船同時(shí)出發(fā).

1)出發(fā)后 小時(shí)兩船與港口的距離相等;

2)出發(fā)幾小時(shí)后乙船在甲船的正東方向?(結(jié)果精確到0.1小時(shí),參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,CE、BD分別為∠ACB、∠ABC的角平分線,CE、BD相交于P

1)求證:CDBE;

2)若∠A98°,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn)(點(diǎn)C不與A,B重合),連接CACB.∠ACB的平分線CD與⊙O交于點(diǎn)D

1)求∠ACD的度數(shù);

2)探究CA,CBCD三者之間的等量關(guān)系,并證明;

3E為⊙O外一點(diǎn),滿足EDBD,AB5,AE3,若點(diǎn)PAE中點(diǎn),求PO的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案